Sabtu, 06 November 2010

Kontrol Gula Darah

Mulberry Leaf, Membantu Kontrol Gula Darah

Mulberry Leaf, Membantu Kontrol Gula Darah
Mulberry Leaf atau daun murbei telah lama digunakan dalam pengobatan Cina untuk pencegahan dan perawatan diabetes;  daun ini mengandung  senyawa yang menekan kadar gula darah tinggi.
Para ilmuwan di Jepang telah menunjuk sejumlah biologis senyawa aktif dalam ekstrak daun murbei putih, Morus alba, tanaman yang sangat di sukai oleh ulat sutra.  Daun bukan hanya berguna bagi makanan ulat sutra, namun ekstrak daun murbei ternyata efektif dalam menekan perkembangan aterosklerosis, penumpukan plak kolesterol di arteries.   Hal ini, tampaknya, dengan menghambat oksidasi LDL-kolesterol (low-density lipoprotein, kolesterol “buruk”), yang merupakan faktor utama dalam perkembangan plak aterosklerotik.
Salah satu spesies, yang putih murbei (Morus alba), dikenal sebagai sumber makanan utama untuk ulat sutra. Banyak dibudidayakan di perusahaan Cina asli.
Menurut satu sumber, murbei putih adalah spesies yang telah digunakan secara eksklusif dalam pengobatan Cina sejak Masehi 659,1 Farmakope Cina (1985) daftar daun, kulit akar, cabang, dan buah-buahan sebagai persiapan bahan obat, tapi lain bagian, termasuk getah dan abu kayu, juga banyak digunakan. (Sulit untuk membayangkan bagaimana abu kayu bisa memiliki nilai obat, kecuali mungkin untuk konten mineral Panas api akan menghancurkan hampir semua molekul biologis aktif.. Apa bahan organik kecil tetap, jika ada, akan terdiri dari senyawa pembakaran yang dihasilkan , termasuk beberapa yang mungkin karsinogenik.)
Apa pun bagian-bagian tanaman, Cina mempersiapkan mereka dalam berbagai cara yang besar. Daun dan kulit akar secara tradisional diolah dengan madu. Segar daun dan buah kadang-kadang dijus untuk konsumsi internal, tapi sebaliknya, semua bagian sudah kering untuk digunakan dalam decoctions (penggunaan internal) atau tapal obat (menggunakan eksternal), yang banyak manfaat kesehatan yang disebabkan. Daun saja mengandung berbagai zat gizi, termasuk protein, gula, polifenol, flavonoid, steroid, triterpenes, vitamin, dan minerals.2 Tidak heran kalau orang ulat sutra mencintai mereka.
Sekelompok ilmuwan gizi di India telah menyarankan bahwa daun murbei putih bisa membuat makanan yang baik, karena mereka begitu kaya dengan nutrisi, khususnya protein.   Mereka mengusulkan bahwa campuran serbuk 01:04 murbei-daun dan tepung terigu akan cocok untuk membuat paratha, item makanan yang paling umum dari sarapan dan makan malam dalam makanan India. Karena ini didominasi vegetarian (sebagian besar butir-based) diet rendah protein dan terlalu rendah dalam sayuran dan buah-buahan untuk kesehatan yang baik, daun murbei bergizi tinggi, nontoxic, dan murah dipandang sebagai obat yang potensial. Paratha dibuat sesuai dengan usulan ahli gizi ‘bahkan telah lulus uji rasa dalam studi dengan relawan (yang tidak, Namun, mulai memproduksi sutra).
Para peneliti Jepang mencapai kesimpulan berdasarkan observasi mereka terhadap efek antioksidan dari ekstrak murbei pada LDL-kolesterol diambil dari kedua kelinci dan manusia. Mereka percaya bahwa para agen terutama (namun tidak eksklusif) bertanggung jawab untuk efek ini adalah dua senyawa yang berkaitan erat, isoquercitrin dan astragalin. Yang pertama berisi, sebagai bagian dari struktur molekul nya, kuersetin terkenal flavonoid antioksidan, yang ditemukan dalam banyak makanan dan dalam berbagai suplemen gizi.
Dalam mempelajari efek antioksidan dari seluruh ekstrak daun murbei-dan, secara terpisah, dari isoquercitrin senyawa, serta dari senyawa kuersetin (yang tidak ditemukan seperti di murbei), para peneliti mengamati bahwa semua yang efektif tetapi isoquercitrin yang agak kurang efektif daripada jumlah yang sama kuersetin. Mereka juga melaporkan, bagaimanapun, bahwa ketika isoquercitrin adalah dicerna (oleh tikus), itu adalah sebagian besar dimetabolisme untuk kuersetin. Jadi, meskipun quercetin tidak ditemukan dalam murbei, murbei masih merupakan sumber yang baik untuk itu (dan ulat sutera masih tidak peduli).
Antioksidan, efek antiatherosclerotic dari murbei yang memuaskan, tentu saja (dan di sini kita membuat asumsi bahwa efek terlihat di laboratorium dan hewan percobaan akan terlihat dalam diri manusia yang sebenarnya juga), tapi ada lebih banyak cerita dari itu. daun murbei telah lama digunakan dalam pengobatan Cina untuk pencegahan dan perawatan diabetes, karena, seperti yang kita ketahui, mengandung senyawa kimia yang menekan kadar gula darah tinggi (hiperglikemia) setelah makan karbohidrat-kaya.
Mengontrol gula darah (glukosa) tingkat sangat penting. Ketika tingkat ini meningkat tajam, seperti yang mereka lakukan setelah menelan makanan dengan indeks glikemik tinggi, seperti kentang atau permen, tubuh merespon dengan memproduksi lebih banyak insulin untuk mengatasi overload tersebut. Tapi kalau ini permintaan lebih banyak insulin terlalu kuat terjadi terlalu sering, kemampuan pankreas untuk menghasilkan insulin yang cukup dapat menjadi cacat, dan sel-sel kita bisa menjadi kebal terhadap insulin seperti mencoba melakukan tugasnya memfasilitasi transportasi glukosa melalui dinding sel. Hasilnya adalah resistensi insulin, kondisi berbahaya yang, jika tidak terkendali, menyebabkan diabetes tipe 2. penyebab utamanya adalah obesitas. Secara umum, jika Anda gemuk, risiko Anda untuk diabetes tinggi, jika tidak, itu rendah (kecuali Anda kebetulan memiliki kecenderungan genetik untuk diabetes).
Apakah Ada Cara Berbeda dengan Attack Diabetes
Diabetes adalah penyakit yang rumit dengan banyak konsekuensi, di antaranya adalah meningkatkan risiko untuk aterosklerosis dan katarak, keduanya sangat terkait dengan stres oksidatif yang disebabkan oleh kekurangan kadar antioksidan. Fakta bahwa orang dengan diabetes memiliki tingkat antioksidan secara signifikan lebih rendah dari normal menunjukkan bahwa penyakit ini dipengaruhi oleh oksidatif-pandangan stres yang didukung oleh kemanjuran klinis terkenal asam lipoat (“antioksidan antioksidan itu”) dalam mencegah dan mengobati diabetes . Hal ini masuk akal untuk menduga bahwa antioksidan lainnya juga bermanfaat terhadap diabetes, dan beberapa memang telah terbukti efektif. Salah satunya adalah senyawa EGCG (epigallocatechin gallate), sebuah polifenol teh hijau yang juga terjadi menjadi anticarcinogen potensial.
Tetapi ada pendekatan terapi lain untuk diabetes juga. Salah satunya adalah melalui senyawa yang meniru efek insulin, seperti MHCP (polimer methylhydroxychalcone), merupakan konstituen dari kayu manis. Pendekatan lain adalah melalui senyawa yang menghambat aksi dari enzim usus yang disebut alpha-glucosidases, yang berfungsi untuk memecah disakarida (gula ganda, seperti sukrosa, maltosa, dan laktosa) turun ke monosakarida (tunggal gula, seperti glukosa, fruktosa, dan galaktosa), sehingga mereka dapat melewati dinding usus ke dalam aliran darah.
Mulberry Kontrol Gula Darah
Kelompok lain penelitian di Jepang telah menemukan bahwa daun murbei putih mengandung senyawa yang menghambat enzymes.3 ini usus Dalam percobaan dengan tikus normal, mereka menemukan bahwa gula tertentu yang mengandung nitrogen dalam ekstrak daun murbei, terutama satu disebut 1-deoxynojirimycin, sangat menghambat metabolisme usus disakarida (terutama sukrosa), sehingga membatasi jumlah monosakarida yang masuk sirkulasi. Mereka juga menemukan bahwa pretreating tikus dengan ekstrak murbei sebelum menyusui mereka secara signifikan menekan karbohidrat normal postprandial (setelah jam makan) kenaikan kadar glukosa darah.
Efek ini menguntungkan terjadi secara dosis-tergantung. Dosis itu, bagaimanapun, sangat besar: 0,1-0,5 g / kg berat badan, yang, untuk 70 kg (154 lb) manusia, akan 7-35 g. (A dosis rendah, 0,02 g / kg, setara dengan 1,4 g bagi manusia, tidak efektif) Meskipun demikian., Para peneliti menyarankan bahwa ekstrak murbei mungkin bermanfaat dalam mencegah diabetes manusia dengan menekan aktivitas alpha-glukosidase usus.
Apakah Daun Mulberry Lebih Baik Daripada Obat Dengan Resep Dokter?
Beberapa orang akan mengatakan bahwa tidak ada banyak perbedaan antara tikus dan manusia-pernyataan yang dapat ditafsirkan pada tingkat yang berbeda. Pada tingkat farmakologi, biasanya (tetapi tidak selalu) benar bahwa tidak ada banyak perbedaan antara kedua spesies. Pada akhirnya, bagaimanapun, tidak ada pengganti yang baik untuk uji klinis dilakukan pada manusia yang sebenarnya. Untungnya, sebuah kelompok riset di India telah dilakukan bahwa untuk murbei, menggunakan daun dari Morus indica (murbei India), sebuah spesies terkait erat dengan Morus alba.4 *
* Beberapa ahli botani telah menyarankan bahwa kedua spesies yang sebenarnya satu dan sama, tapi ini tetap menjadi pertanyaan kontroversial yang dapat dijawab hanya dengan lebih halus studies.5
Murbei secara signifikan mengurangi puasa kadar glukosa darah dalam diabetes laki-laki, menunjukkan bahwa itu bisa berguna untuk mengendalikan diabetes. Hal ini juga menurunkan tingkat kolesterol pria.
Para peneliti India mempelajari efek murbei terhadap kadar glukosa darah, pada kadar lipid darah (kolesterol dan trigliserida), dan pada peroksidasi lipid di membran sel eritrosit (sel darah merah). ujian mata pelajaran mereka 24 pria, usia 40 sampai 60, dengan tipe ringan 2 diabetes. Orang-orang secara acak menjadi dua kelompok: satu kelompok menerima dua kapsul 500 mg bubuk daun murbei tiga kali sehari, dengan total 3000 mg (3 g) setiap hari, sedangkan kelompok lainnya menerima pengobatan standar dengan glibenklamid (lebih umum disebut glyburide), sebuah obat antidiabetes jenis sulfonilurea. Sidang berlangsung selama 4 minggu.
Hasil penelitian menunjukkan bahwa dibandingkan dengan glibenklamid, murbei signifikan mengurangi kadar glukosa darah puasa pada pria penderita diabetes, menunjukkan bahwa itu bisa berguna untuk mengendalikan diabetes. Mulberry juga secara signifikan menurunkan kolesterol total pasien, LDL-kolesterol, dan trigliserida, sedangkan secara signifikan meningkatkan HDL mereka-kolesterol (high density lipoprotein, kolesterol “baik”). Sebaliknya, hanya glibenklamid pengaruh signifikan untuk menurunkan trigliserida.
Murberry Leaf Melindungi Membran Sel Darah
Para peneliti tertarik pada membran eritrosit pasien karena struktur halus, terutama terdiri dari lipid (zat lemak, termasuk kolesterol), dikenakan peroksidasi, proses destruktif disebabkan oleh jenis molekul yang sangat reaktif radikal bebas yang dikenal sebagai. stres oksidatif seperti ini pada umumnya diimbangi dengan kehadiran antioksidan, namun tingkat senyawa pelindung vital biasanya di bawah normal pada penderita diabetes, seperti yang disebutkan di atas. Kerusakan menghasilkan membran eritrosit pasien bisa kompromi kesehatan mereka dengan berbagai cara-semua bagian dari bencana diabetes, di mana peroksidasi lipid yang berlebihan dan efek yang merusak adalah fitur khas.
Ternyata murbei yang secara signifikan mengurangi peroksidasi lipid di membran eritrosit pasien, sedangkan glibenklamid tidak. Mulberry juga membawa tentang penurunan signifikan dalam tingkat peroksida lipid dalam plasma pasien dan urin darah. Para penulis menyatakan:
Sebagai kesimpulan, penelitian ini menyediakan data awal yang menunjukkan bahwa terapi murbei mampu meningkatkan kontrol glisemik pada pasien dengan diabetes tipe 2. Pekerjaan kami menunjukkan bahwa serum dan lipid membran eritrosit penderita diabetes yang baik dipengaruhi oleh terapi murbei.
Dance for Life Anda!
Diabetes adalah salah satu yang terburuk, namun salah satu yang paling mudah dicegah, penyakit degeneratif kronis yang menimpa kita seperti yang kita dapatkan pandemi tua-dan itu menjadi. Karena memanjakan diri sendiri makanan gaya hidup kita yang kaya-terlalu banyak, terlalu sedikit latihan-kita cenderung kelebihan berat badan, dari bentuk, dan rentan terhadap kolesterol tinggi dan tekanan darah tinggi. Itu resep untuk resistensi insulin dan diabetes penuh ditiup, yang akan membuka kotak Pandora konsekuensi buruk.
Solusinya adalah jelas. Tidak begitu jelas, bagaimanapun, adalah kenyataan bahwa ada suplemen gizi, seperti murbei, yang dapat membantu kita menangkis diabetes sementara kami berusaha untuk mengikuti gaya hidup sehat. Di antara berbagai bentuk bahwa mengejar seperti itu dapat diambil adalah menari, yang mungkin merupakan cara yang paling menyenangkan untuk berolahraga pernah diciptakan (“ungkapan keinginan vertikal horisontal,” seperti George Bernard Shaw katakan). Jadi segera keluar dan menari! Dan jika harus terjadi pada Anda pohon murbei … baik, Anda akan tahu apa yang harus dilakukan.
Referensi
K Doi, Kojima T, Makino M, Kimura Y, Y. Fujimoto Penelitian tentang konstituen daun Morus alba L. Chem Pharm Bull 2001; 49 (2) :151-3.
Doi K, Kojima T, Y. Fujimoto daun Mulberry ekstrak menghambat modifikasi oksidatif kelinci dan manusia low-density lipoprotein. Biol Pharm Bull tahun 2000; 23 (9) :1066-71.
Miyahara C, Miyazawa M, Satoh S, Sakai A, S. Mizusaki hambat efek ekstrak daun murbei pada hiperglikemia postprandial pada tikus normal. J Nutr Sci 2004 Vitaminol; 50; 161-4.
Andallu B, V Suryakantham, Srikanthi BL, GK Reddy. Pengaruh murbei (Morus indica L.) terapi pada plasma dan membran lipid eritrosit pada pasien dengan diabetes tipe 2. Clin chim Acta 2001; 314:47-53.
Vijayan K Srivastava, PP, AK Awasthi. Analisis hubungan kekerabatan antara lima murbei (Morus) spesies menggunakan penanda molekuler. Genom 2004; 47:439-48.
Perhatian:
Jika Anda memiliki diabetes, jangan mengambil suplemen yang dapat mempengaruhi kadar gula darah Anda tanpa terlebih dahulu berkonsultasi dengan dokter Anda. Diabetes adalah penyakit serius yang membutuhkan manajemen yang profesional hati.

Sabtu, 23 Oktober 2010

IC atau Sirkuit Terpadu

Sirkuit terpadu


Sirkuit terpadu Atmel Diopsis 740 System on Chip yang menunjukkan blok memori, logika dan pad masukan/keluaran di sekitar periperal
Sirkuit terpadu (bahasa Inggris: integrated circuit atau IC) adalah komponen dasar yang terdiri dari resistor, transistor dan lain-lain. IC adalah komponen yang dipakai sebagai otak peralatan elektronika.
Pada komputer, IC yang dipakai adalah mikroprosesor. Dalam sebuah mikroprosesor Intel Pentium 4 dengan ferkuensi 1,8 trilyun getaran per detik terdapat 16 juta transistor, belum termasuk komponen lain. Fabrikasi yang dipakai oleh mikroprosesor adalah 60nm.
Sirkuit terpadu dimungkinkan oleh teknologi pertengahan abad ke-20 dalam fabrikasi alat semikonduktor dan penemuan eksperimen yang menunjukkan bahwa alat semikonduktor dapat melakukan fungsi yang dilakukan oleh tabung vakum. Pengintegrasian transistor kecil yang banyak jumlahnya ke dalam sebuah chip yang kecil merupakan peningkatan yang sangat besar bagi perakitan tube-vakum sebesar-jari. Ukuran IC yang kecil, tepercaya, kecepatan "switch", konsumsi listrik rendah, produksi massal, dan kemudahan dalam menambahkan jumlahnya dengan cepat menyingkirkan tube vakum.
IC di dalam sebuah sirkuit elektronik
Hanya setengah abad setelah penemuannya, IC telah digunakan dimana-mana. Radio, televisi, komputer, telepon selular, dan peralatan digital lainnya yang merupakan bagian penting dari masyarakat modern. Contohnya, sistem transportasi, internet, dll tergantung dari keberadaan alat ini. Banyak skolar percaya bahwa revolusi digital yang dibawa oleh sirkuit terpadu merupakan salah satu kejadian penting dalam sejarah umat manusia.
IC mempunyai ukuran seukuran tutup pena sampai ukuran ibu jari dan dapat diisi sampai 250 kali dan digunakan pada alat elektronika seperti:
  • Telepon
  • Kalkulator
  • Handphone
  • Radio

PCB

Printed circuit board


Part of a 1983 Sinclair ZX Spectrum computer board; a populated PCB, showing the conductive traces, vias (the through-hole paths to the other surface), and some mounted electrical components
A printed circuit board, or PCB, is used to mechanically support and electrically connect electronic components using conductive pathways, tracks or signal traces etched from copper sheets laminated onto a non-conductive substrate. It is also referred to as printed wiring board (PWB) or etched wiring board. A PCB populated with electronic components is a printed circuit assembly (PCA), also known as a printed circuit board assembly (PCBA).
PCBs are inexpensive, and can be highly reliable. They require much more layout effort and higher initial cost than either wire-wrapped or point-to-point constructed circuits, but are much cheaper and faster for high-volume production. Much of the electronics industry's PCB design, assembly, and quality control needs are set by standards that are published by the IPC organization.

History

The inventor of the printed circuit was the Austrian engineer Paul Eisler (1907–1995) who, while working in England, made one circa 1936 as part of a radio set. Around 1943 the USA began to use the technology on a large scale to make rugged radios for use in World War II. After the war, in 1948, the USA released the invention for commercial use. Printed circuits did not become commonplace in consumer electronics until the mid-1950s, after the Auto-Sembly process was developed by the United States Army.
Before printed circuits (and for a while after their invention), point-to-point construction was used. For prototypes, or small production runs, wire wrap or turret board can be more efficient. Predating the printed circuit invention, and similar in spirit, was John Sargrove's 1936-1947 Electronic Circuit Making Equipment (ECME) which sprayed metal onto a Bakelite plastic board. The ECME could produce 3 radios per minute.
During World War II, the development of the anti-aircraft proximity fuse required an electronic circuit that could withstand being fired from a gun, and could be produced in quantity. The Centralab Division of Globe Union submitted a proposal which met the requirements: a ceramic plate would be screenprinted with metallic paint for conductors and carbon material for resistors, with ceramic disc capacitors and subminiature vacuum tubes soldered in place.[1]
Originally, every electronic component had wire leads, and the PCB had holes drilled for each wire of each component. The components' leads were then passed through the holes and soldered to the PCB trace. This method of assembly is called through-hole construction. In 1949, Moe Abramson and Stanislaus F. Danko of the United States Army Signal Corps developed the Auto-Sembly process in which component leads were inserted into a copper foil interconnection pattern and dip soldered. With the development of board lamination and etching techniques, this concept evolved into the standard printed circuit board fabrication process in use today. Soldering could be done automatically by passing the board over a ripple, or wave, of molten solder in a wave-soldering machine. However, the wires and holes are wasteful since drilling holes is expensive and the protruding wires are merely cut off.
In recent years, the use of surface mount parts has gained popularity as the demand for smaller electronics packaging and greater functionality has grown.

Manufacturing

Materials

Conducting layers are typically made of thin copper foil. Insulating layers dielectric are typically laminated together with epoxy resin prepreg. The board is typically coated with a solder mask that is green in color. Other colors that are normally available are blue and red. There are quite a few different dielectrics that can be chosen to provide different insulating values depending on the requirements of the circuit. Some of these dielectrics are polytetrafluoroethylene (Teflon), FR-4, FR-1, CEM-1 or CEM-3. Well known prepreg materials used in the PCB industry are FR-2 (Phenolic cotton paper), FR-3 (Cotton paper and epoxy), FR-4 (Woven glass and epoxy), FR-5 (Woven glass and epoxy), FR-6 (Matte glass and polyester), G-10 (Woven glass and epoxy), CEM-1 (Cotton paper and epoxy), CEM-2 (Cotton paper and epoxy), CEM-3 (Woven glass and epoxy), CEM-4 (Woven glass and epoxy), CEM-5 (Woven glass and polyester). Thermal expansion is an important consideration especially with BGA and naked die technologies, and glass fiber offers the best dimensional stability.
A PCB as a design on a computer (left) and realized as a board assembly populated with components (right). The board is double sided, with through-hole plating, green solder resist, and white silkscreen printing. Both surface mount and through-hole components have been used.
FR-4 is by far the most common material used today. The board with copper on it is called "copper-clad laminate".
In the US, copper foil thickness can be specified in non-metric or in metric units. The non-metric units are usually ounces per square foot. One ounce per square foot is 0.001344 inches (34 micrometres).
Typical density of a raw PCB (an average amount of traces, holes, and vias, with no components) is 2.15g / cm3.

Patterning (etching)

The vast majority of printed circuit boards are made by bonding a layer of copper over the entire substrate, sometimes on both sides, (creating a "blank PCB") then removing unwanted copper after applying a temporary mask (e.g. by etching), leaving only the desired copper traces. A few PCBs are made by adding traces to the bare substrate (or a substrate with a very thin layer of copper) usually by a complex process of multiple electroplating steps. The PCB manufacturing method primarily depends on whether it is for production volume or sample/prototype quantities.

Commercial (production quantities, usually PTH)

  • silk screen printing -the main commercial method.
  • Photographic methods. Used when fine linewidths are required.

Hobbyist/prototype (small quantities, usually not PTH)

  • Laser-printed resist: Laser-print onto paper (or wax paper), heat-transfer with a household clothes iron onto bare laminate, then etch.
  • Print onto transparent film and use as photomask along with photo-sensitized boards. (i.e. pre-sensitized boards), Then etch. (Alternatively, use a film photoplotter).
  • Laser resist ablation: Spray black paint onto copper clad laminate, place into CNC laser plotter. The laser raster-scans the PCB and ablates (vaporizes) the paint where no resist is wanted. Etch. (Note: laser copper ablation is rarely used and is considered experimental.)
  • Use a CNC-mill with a spade-shaped (i.e. 45-degree) cutter or miniature end-mill to route away the undesired copper, leaving only the traces.
There are three common "subtractive" methods (methods that remove copper) used for the production of printed circuit boards:
  1. Silk screen printing uses etch-resistant inks to protect the copper foil. Subsequent etching removes the unwanted copper. Alternatively, the ink may be conductive, printed on a blank (non-conductive) board. The latter technique is also used in the manufacture of hybrid circuits.
  2. Photoengraving uses a photomask and chemical etching to remove the copper foil from the substrate. The photomask is usually prepared with a photoplotter from data produced by a technician using CAM, or computer-aided manufacturing software. Laser-printed transparencies are typically employed for phototools; however, direct laser imaging techniques are being employed to replace phototools for high-resolution requirements.
  3. PCB milling uses a two or three-axis mechanical milling system to mill away the copper foil from the substrate. A PCB milling machine (referred to as a 'PCB Prototyper') operates in a similar way to a plotter, receiving commands from the host software that control the position of the milling head in the x, y, and (if relevant) z axis. Data to drive the Prototyper is extracted from files generated in PCB design software and stored in HPGL or Gerber file format.
"Additive" processes also exist. The most common is the "semi-additive" process. In this version, the unpatterned board has a thin layer of copper already on it. A reverse mask is then applied. (Unlike a subtractive process mask, this mask exposes those parts of the substrate that will eventually become the traces.) Additional copper is then plated onto the board in the unmasked areas; copper may be plated to any desired weight. Tin-lead or other surface platings are then applied. The mask is stripped away and a brief etching step removes the now-exposed original copper laminate from the board, isolating the individual traces. Some boards with plated thru holes but still single sided were made with a process like this. General Electric made consumer radio sets in the late 1960s using boards like these.
The additive process is commonly used for multi-layer boards as it facilitates the plating-through of the holes (to produce conductive vias) in the circuit board.
The dimensions of the copper conductors of the printed circuit board is related to the amount of current the conductor must carry. Each trace consists of a flat, narrow part of the copper foil that remains after etching. Signal traces are usually narrower than power or ground traces because their current carrying requirements are usually much less. In a multi-layer board one entire layer may be mostly solid copper to act as a ground plane for shielding and power return. For printed circuit boards that contain microwave circuits, transmission lines can be laid out in the form of stripline and microstrip with carefully-controlled dimensions to assure a consistent impedance. In radio-frequency circuits the inductance and capacitance of the printed circuit board conductors can be used as a delibrate part of the circuit design, obviating the need for additional discrete components.

Etching

Chemical etching is done with ferric chloride, ammonium persulfate, or sometimes hydrochloric acid. For PTH (plated-through holes), additional steps of electroless deposition are done after the holes are drilled, then copper is electroplated to build up the thickness, the boards are screened, and plated with tin/lead. The tin/lead becomes the resist leaving the bare copper to be etched away.

Lamination

Some PCBs have trace layers inside the PCB and are called multi-layer PCBs. These are formed by bonding together separately etched thin boards.

Drilling

Holes through a PCB are typically drilled with tiny drill bits made of solid tungsten carbide. The drilling is performed by automated drilling machines with placement controlled by a drill tape or drill file. These computer-generated files are also called numerically controlled drill (NCD) files or "Excellon files". The drill file describes the location and size of each drilled hole. These holes are often filled with annular rings (hollow rivets) to create vias. Vias allow the electrical and thermal connection of conductors on opposite sides of the PCB.
Most common laminate is epoxy filled fiberglass. Drill bit wear is partly due to embedded glass, which is harder than steel. High drill speed necessary for cost effective drilling of hundreds of holes per board causes very high temperatures at the drill bit tip, and high temperatures (400-700 degrees) soften steel and decompose (oxidize) laminate filler. Copper is softer than epoxy and interior conductors may suffer damage during drilling.
When very small vias are required, drilling with mechanical bits is costly because of high rates of wear and breakage. In this case, the vias may be evaporated by lasers. Laser-drilled vias typically have an inferior surface finish inside the hole. These holes are called micro vias.
It is also possible with controlled-depth drilling, laser drilling, or by pre-drilling the individual sheets of the PCB before lamination, to produce holes that connect only some of the copper layers, rather than passing through the entire board. These holes are called blind vias when they connect an internal copper layer to an outer layer, or buried vias when they connect two or more internal copper layers and no outer layers.
The walls of the holes, for boards with 2 or more layers, are made conductive then plated with copper to form plated-through holes that electrically connect the conducting layers of the PCB. For multilayer boards, those with 4 layers or more, drilling typically produces a smear of the high temperature decomposition products of bonding agent in the laminate system. Before the holes can be plated through, this smear must be removed by a chemical de-smear process, or by plasma-etch. Removing (etching back) the smear also reveals the interior conductors as well.

Exposed conductor plating and coating

PCBs[2] are plated with solder, tin, or gold over nickel as a resist for etching away the unneeded underlying copper.[3] Matte solder is usually fused to provide a better bonding surface or stripped to bare copper. Treatments, such as benzimidazolethiol, prevent surface oxidation of bare copper. The places to which components will be mounted are typically plated, because untreated bare copper oxidizes quickly, and therefore is not readily solderable. Traditionally, any exposed copper was coated with solder by hot air solder levelling (HASL). This solder was a tin-lead alloy, however new solder compounds are now used to achieve compliance with the RoHS directive in the EU and US, which restricts the use of lead. One of these lead-free compounds is SN100CL, made up of 99.3% tin, 0.7% copper, 0.05% nickel, and a nominal of 60ppm germanium.
It is important to use solder compatible with both the PCB and the parts used. An example is Ball Grid Array (BGA) using tin-lead solder balls for connections losing their balls on bare copper traces or using lead-free solder paste.
Other platings used are OSP (organic surface protectant), immersion silver (IAg), immersion tin, electroless nickel with immersion gold coating (ENIG), and direct gold (over nickel). Edge connectors, placed along one edge of some boards, are often nickel plated then gold plated. Another coating consideration is rapid diffusion of coating metal into Tin solder. Tin forms intermetallics such as Cu5Sn6 and Ag3Cu that dissolve into the Tin liquidus or solidus(@50C), stripping surface coating and/or leaving voids.
Electrochemical migration (ECM) is the growth of conductive metal filaments on or in a printed circuit board (PCB) under the influence of a DC voltage bias.[4][5] Silver, zinc, and aluminum are known to grow whiskers under the influence of an electric field. Silver also grows conducting surface paths in the presence of halide and other ions, making it a poor choice for electronics use. Tin will grow "whiskers" due to tension in the plated surface. Tin-Lead or Solder plating also grows whiskers, only reduced by the percentage Tin replaced. Reflow to melt solder or tin plate to relieve surface stress lowers whisker incidence. Another coating issue is tin pest, the transformation of tin to a powdery allotrope at low temperature.[6]

[edit] Solder resist

Areas that should not be soldered may be covered with a polymer solder resist (solder mask) coating. The solder resist prevents solder from bridging between conductors and creating short circuits. Solder resist also provides some protection from the environment. Solder resist is typically 20-30 micrometres thick.

Screen printing

Line art and text may be printed onto the outer surfaces of a PCB by screen printing. When space permits, the screen print text can indicate component designators, switch setting requirements, test points, and other features helpful in assembling, testing, and servicing the circuit board.
Screen print is also known as the silk screen, or, in one sided PCBs, the red print.
Lately some digital printing solutions have been developed to substitute the traditional screen printing process. This technology allows printing variable data onto the PCB, including serialization and barcode information for traceability purposes.

[edit] Test

Unpopulated boards may be subjected to a bare-board test where each circuit connection (as defined in a netlist) is verified as correct on the finished board. For high-volume production, a Bed of nails tester, a fixture or a Rigid needle adapter is used to make contact with copper lands or holes on one or both sides of the board to facilitate testing. A computer will instruct the electrical test unit to apply a small voltage to each contact point on the bed-of-nails as required, and verify that such voltage appears at other appropriate contact points. A "short" on a board would be a connection where there should not be one; an "open" is between two points that should be connected but are not. For small- or medium-volume boards, flying probe and flying-grid testers use moving test heads to make contact with the copper/silver/gold/solder lands or holes to verify the electrical connectivity of the board under test.

Printed circuit assembly

After the printed circuit board (PCB) is completed, electronic components must be attached to form a functional printed circuit assembly,[7][8] or PCA (sometimes called a "printed circuit board assembly" PCBA). In through-hole construction, component leads are inserted in holes. In surface-mount construction, the components are placed on pads or lands on the outer surfaces of the PCB. In both kinds of construction, component leads are electrically and mechanically fixed to the board with a molten metal solder.
There are a variety of soldering techniques used to attach components to a PCB. High volume production is usually done with machine placement and bulk wave soldering or reflow ovens, but skilled technicians are able to solder very tiny parts (for instance 0201 packages which are 0.02 in. by 0.01 in.)[9] by hand under a microscope, using tweezers and a fine tip soldering iron for small volume prototypes. Some parts are impossible to solder by hand, such as ball grid array (BGA) packages.
Often, through-hole and surface-mount construction must be combined in a single assembly because some required components are available only in surface-mount packages, while others are available only in through-hole packages. Another reason to use both methods is that through-hole mounting can provide needed strength for components likely to endure physical stress, while components that are expected to go untouched will take up less space using surface-mount techniques.
After the board has been populated it may be tested in a variety of ways:
  • While the power is on, in-circuit test, where physical measurements (i.e. voltage, frequency) can be done.
  • While the power is on, functional test, just checking if the PCB does what it had been designed for.
To facilitate these tests, PCBs may be designed with extra pads to make temporary connections. Sometimes these pads must be isolated with resistors. The in-circuit test may also exercise boundary scan test features of some components. In-circuit test systems may also be used to program nonvolatile memory components on the board.
In boundary scan testing, test circuits integrated into various ICs on the board form temporary connections between the PCB traces to test that the ICs are mounted correctly. Boundary scan testing requires that all the ICs to be tested use a standard test configuration procedure, the most common one being the Joint Test Action Group (JTAG) standard.
When boards fail the test, technicians may desolder and replace failed components, a task known as rework.

Protection and packaging

PCBs intended for extreme environments often have a conformal coating, which is applied by dipping or spraying after the components have been soldered. The coat prevents corrosion and leakage currents or shorting due to condensation. The earliest conformal coats were wax; modern conformal coats are usually dips of dilute solutions of silicone rubber, polyurethane, acrylic, or epoxy. Another technique for applying a conformal coating is for plastic to be sputtered onto the PCB in a vacuum chamber. The chief disadvantage of conformal coatings is that servicing of the board is rendered extremely difficult.[10]
Many assembled PCBs are static sensitive, and therefore must be placed in antistatic bags during transport. When handling these boards, the user must be grounded (earthed). Improper handling techniques might transmit an accumulated static charge through the board, damaging or destroying components. Even bare boards are sometimes static sensitive. Traces have become so fine that it's quite possible to blow an etch off the board (or change its characteristics) with a static charge. This is especially true on non-traditional PCBs such as MCMs and microwave PCBs.

Design

  • Schematic capture or schematic entry is done through an EDA tool.
  • Card dimensions and template are decided based on required circuitry and case of the PCB. Determine the fixed components and heat sinks if required.
  • Deciding stack layers of the PCB. 4 to 12 layers or more depending on design complexity. Ground plane and Power plane are decided. Signal planes where signals are routed are in top layer as well as internal layers.[11]
  • Line impedance determination using dielectric layer thickness, routing copper thickness and trace-width. Trace separation also taken into account in case of differential signals. Microstrip, stripline or dual stripline can be used to route signals.
  • Placement of the components. Thermal considerations and geometry are taken into account. Vias and lands are marked.
  • Routing the signal trace. For optimal EMI performance high frequency signals are routed in internal layers between power or ground planes as power plane behaves as ground for AC.
  • Gerber File generation for manufacturing.

Safety certification (US)

Safety Standard UL 796 covers component safety requirements for printed wiring boards for use as components in devices or appliances. Testing analyzes characteristics such as flammability, maximum operating temperature, electrical tracking, heat deflection, and direct support of live electrical parts.
The boards may use organic or inorganic base materials in a single or multilayer, rigid or flexible form. Circuitry construction may include etched, die stamped, precut, flush press, additive, and plated conductor techniques. Printed-component parts may be used.
The suitability of the pattern parameters, temperature and maximum solder limits shall be determined in accordance with the applicable end-product construction and requirements.

"Cordwood" construction

A cordwood module.
Cordwood construction can save significant space and was often used with wire-ended components in applications where space was at a premium (such as missile guidance and telemetry systems) and in high-speed computers, where short traces were important. In "cordwood" construction, axial-leaded components were mounted between two parallel planes. The components were either soldered together with jumper wire, or they were connected to other components by thin nickel ribbon welded at right angles onto the component leads. To avoid shorting together different interconnection layers, thin insulating cards were placed between them. Perforations or holes in the cards allowed component leads to project through to the next interconnection layer. One disadvantage of this system was that special nickel leaded components had to be used to allow the interconnecting welds to be made. Some versions of cordwood construction used single sided PCBs as the interconnection method (as pictured). This meant that normal leaded components could be used. Another disadvantage of this system is that components located in the interior are difficult to replace.
Before the advent of integrated circuits, this method allowed the highest possible component packing density; because of this, it was used by a number of computer vendors including Control Data Corporation. The cordwood method of construction now appears to have fallen into disuse, probably because high packing densities can be more easily achieved using surface mount techniques and integrated circuits.

Multiwire boards

Multiwire is a patented technique of interconnection which uses machine-routed insulated wires embedded in a non-conducting matrix (often plastic resin). It was used during the 1980s and 1990s. (Kollmorgen Technologies Corp., U.S. Patent 4,175,816) Multiwire is still available in 2010 through Hitachi. There are other competitive discrete wiring technologies that have been developed (Jumatech [1]).
Since it was quite easy to stack interconnections (wires) inside the embedding matrix, the approach allowed designers to forget completely about the routing of wires (usually a time-consuming operation of PCB design): Anywhere the designer needs a connection, the machine will draw a wire in straight line from one location/pin to another. This led to very short design times (no complex algorithms to use even for high density designs) as well as reduced crosstalk (which is worse when wires run parallel to each other—which almost never happens in Multiwire), though the cost is too high to compete with cheaper PCB technologies when large quantities are needed.

Surface-mount technology

Surface mount components, including resistors, transistors and an integrated circuit
Surface-mount technology emerged in the 1960s, gained momentum in the early 1980s and became widely used by the mid 1990s. Components were mechanically redesigned to have small metal tabs or end caps that could be soldered directly on to the PCB surface. Components became much smaller and component placement on both sides of the board became more common than with through-hole mounting, allowing much higher circuit densities. Surface mounting lends itself well to a high degree of automation, reducing labour costs and greatly increasing production and quality rates. Carrier Tapes provide a stable and protective environment for Surface mount devices (SMDs) which can be one-quarter to one-tenth of the size and weight, and passive components can be one-half to one-quarter of the cost of corresponding through-hole parts. However, integrated circuits are often priced the same regardless of the package type, because the chip itself is the most expensive part. As of 2006, some wire-ended components, such as small-signal switch diodes, e.g. 1N4148, are actually significantly cheaper than corresponding SMD versions.

Kabel

Kabel


Kabel dalam bahasa Inggris disebut cable merupakan sebuah alat yang digunakan untuk mentransmisikan sinyal dari satu tempat ke tempat lain.[1]
Kabel seiring dengan perkembangannya dari waktu ke waktu terdiri dari berbagai jenis dan ukuran yang membedakan satu dengan lainnya.[1] Berdasarkan jenisnya, kabel terbagi menjadi 3 yakni kabel tembaga (copper), kabel koaksial, dan kabel serat optik.[1]

Sejarah

Kabel mulai ditemukan saat manusia membutuhkan sebuah alat yang berguna untuk menghubungkan suatu perangkat dengan perangkat lain.[1] Proses penemuan kabel ini tidak sama antara satu jenis kabel dengan kabel lainnya.[1] Penemuan kabel tembaga membutuhkan proses yang paling lama dibanding kabel yang lain, hingga akhirnya berhasil ditemukan sebuah telepon.[1] Penemuan kabel koaksial mengikuti penemuan kabel tembaga.[1] Baru-baru ini, kabel koaksial telah disempurnakan kembali dengan penemuan kabel serat optik yang sangat tipis dan mampu mentransmisikan sinyal cahaya.[2]

Jenis

Kabel tembaga

Salah satu jenis kabel tembaga
Kabel tembaga terbagi atas UTP (Unshielded Twisted Pair) dan STP (Shielded Twisted Pair).[1] Perbedaan dari keduanya adalah adanya pelindung dan tidak adanya pelindung pada bagian inti konduktornya.[1] Kabel UTP terdiri dari 4 pasang kabel dengan jalinan yang berbeda-beda tiap incinya.[1] Semakin rapat jalinan tersebut, tingkat transimisi dan harganya semakin tinggi.[1] Kabel UTP ini menggunakan konektor RJ-45 yang biasa digunakan untuk Ethernet, ISDN, atau sambungan telepon.[1] Dengan kabel UTP, kita dapat mengirimkan data lebih banyak dibandingkan LAN.[1]
Sedangkan, kabel STP terdiri dari sepasang kabel yang dilindungi oleh timah, dan masing-masing kabel tersebut dibungkus oleh pelindung.[1]

Kabel koaksial

Jenis kabel koaksial
Kabel koaksial ditemukan oleh Oliver Heaviside.[1] Merupakan kabel yang terdiri dari dua buah konduktor, yaitu terletak di tengah yang terbuat dari tembaga keras yang dilapisi dengan isolator dan melingkar di luar isolator pertama dan tertutup oleh isolator luar.[1] Kabel koaksial memiliki 3 bagian utama, yakni pelindung luar, pelindung berupa anyaman tembaga, dan isolator plastik. [1]
Kabel koaksial memiliki kapasitas pita lebar (bandwidth) 10 Mbps dan kapasitas node 30 node.[1]Kabel koaksial sering dipakai sebagai jalur transmisi untuk frekuensi sinyal radio. [1]
Beberapa jenis kabel koaksial, yaitu:[1]
  1. Kabel coaxial RG-62A/U : merupakan kabel berwarna hitam dengan inti berupa kabel serabut. Ukuran kabel ini kurang lebih 0.25 inch (6 mm).
  2. Thin coaxial cable: merupakan kabel koaksial berdiameter rata-rata 5mm yang berwarna gelap dan banyak digunakan dikalangan radio amatir.
  3. Thick coaxial cable: merupakan kabel berdiameter rata-rata 12mm dan sering dikenal sebagai yellow cable.

Kabel serat optik

Kabel Serat Optik
Kabel serat optik merupakan sebuah kabel yang terbuat dari kaca atau plastik yang berfungsi untuk mentransmisikan sinyal cahaya. [2] Kabel serat optik berukuran sangat tipis dan berdiameter sehelai rambut manusia yang saat ini paling banyak digunakan sebagai media transimisi dalam teknologi komunikasi modern.[3]
Bagian-bagian utama serat optik tersebut adalah bagian inti tempat merambatnya gelombang cahaya, lapisan selimut yang mengelilingi bagian inti dengan indeks bias yang lebih kecil, dan lapisan jake yang melindungi bagian inti dan selimut dengan plastik yang elastis.[2] Komponen utama sistem serat optik terdiri dari transmitter (Laser Diode dan Laser Emmiting Diode), information channel yang berupa serat optik, dan receiver. [1]

Manfaat

Secara general, kabel memiliki fungsi sebagai media transimisi yang berperan untuk mempercepat penyampaian pesan.[3] Setiap kabel memiliki spesialisasi fungsi yang berbeda-beda.[3] Kabel tembaga seringkali digunakan sebagai penghubung ke jaringan telepon dan Ethernet. [4] Kabel koaksial sering kita gunakan pada televisi dan radio.[3] Sedangkan, kabel fiber optik sering kita gunakan sebagai jalinan penghubung bawah laut (underwater lines) merupakan media transmisi antar samudera, qube, dan video pay per view. [3]

Kelebihan

  1. Kabel Tembaga. Beberapa kelebihan dari kabel tembaga, antara lain adalah harganya murah, instalasinya mudah, mudah didapat, dan fleksibel, menggunakan satu medium untuk semua.[5]
  2. Kabel Koaksial. Beberapa kelebihan dari kabel koaksial adalah kapasitas bandwith dan jangkauan transmisi yang lebih besar, pengiriman informasi yanglebih cepat, dan lebih murah dari serat optik.[1].
  3. Kabel Serat Optik. Beberapa kelebihan dari kabel serat optik adalah berukuran tipis dan berdiameter sehelai rambut manusia, dapat mentransmisikan sinyal cahaya, kapasitas bandwidth dan kecepatan transmisi yang sangat besar, mencapai terabyte, mudah untuk dibawa, serta tidak rentan terhadap gangguan frekuensi listrik.[2]

Kelemahan

  1. Kabel Tembaga. Beberapa kelemahan dari kabel tembaga adalah rentan terhadap gangguan frekuensi listrik dan radio, tidak dapat mentransmisikan sinyal cahaya, dan kapasitas bandwithnya yang kecil.[5]
  2. Kabel Koaksial. Beberapa kelemahan dari kabel koaksial adalah sulit dalam instalasinya, sering mengakibatkan masalah dalam koneksi jika kedua ujungnya tidak di ground dengan baik, dan lebih mahal jika dibandingkan dengan kabel tembaga.[1]
  3. Kabel Serat Optik. Beberapa kelemahan dari kabel serat optik adalah harganya yang mahal termasuk peralatan khusus untuk penyambungannya, serta konstruksinya yang lemah sehingga memerlukan lapisan penguat untuk proteksi.[2]

Kamis, 21 Oktober 2010

NASA desan pesawat masa depan

Tak hanya mengurus  masalah luar angkasa, Badan Antariksa Amerika Serikat, NASA juga ikut berkontribusi mengembangkan desain pesawat penumpang dalam program Fundamental Aeronautic NASA, April 2010.
Melalui penelitian selama 18 bulan, NASA memvisualisasikan pesawat penumpang masa depan.  Desain pesawat baru ini akan diterapkan 20-25 tahun dari sekarang.
Ada beberapa ide desain segar — meski dalam pandangan pertama terlihat kuno.
Alih-alih mengadopsi bentuk pesawat dalam fiksi ilmiah, desain pesawat baru ini tak beda drastis dengan bentuk pesawat yang sudah ada.
Namun, jika dilihat dengan seksama, ada perbedaan signifikan — terobosan baru ada di kerangka pesawat dan penggunaan teknologi akan membuat pesawat masa depan lebih tenang, tak berisik, lebih bersih, dan efisien bahan bakar. Juga lebih mengedepankan kenyamanan penumpang.
Dengan melihat desain NASA, Anda juga bisa melihat bentuk ultramodern dengan keramik atau gabungan serat,  tabung karbon, kabel fiber optik, lapisan kulit pesawat yang bisa memperbaiki diri, mesin listrik hibrida, sayap lipat, badan pesawat terbang dobel, dan jendela virtual.
“Berdiri di depan pesawat masa depan ini, Anda mungkin tak bisa membedakannya dengan pesawat konvensional. Namun, pengembangannya dilakukan secara revolusioner,” kata ilmuwan proyek Fundamental Aeronautics Program NASA, Richard Wahls, seperti dimuat laman NASA, Rabu 19 Mei 2010.
“Yang mengagumkan ada pada teknologinya, bukan sekedar bungkus pesawat,” kata dia.
Pada Oktober 2008 lalu, NASA menyerukan pada industri dan dunia akademis untuk membayangkan konsep canggih pesawat terbang 2030-an, yang dapat mengantisipasi kebutuhan transportasi udara komersial, tapi efisien dalam menggunakan bahan bakar, juga ramah lingkungan.
NASA tidak menyebut secara pasti apakah pesawat masa depan ini akan digunakan untuk penerbangan domestik atau penerbangan internasional dengan jarak yang lebih jauh.
Empat tim bergabung dalam program ini, yakni,
1. Tim GE Aviation menuangkan konsep pesawat masa depan yang bisa mengangkut 20 penumpang. Pesawat ini bisa mengangkut penumpang dari satu lokasi ke lokasi lain — diharapkan mengurangi kemacetan di kota metropolis.
Bentuk pesawat ini oval, dengan fitur yang meratakan aliran udara ke seluruh permukaan. Pesawat ini memiliki bahan bakar pembangkit listrik yang canggih. Mesin pesawat tak berisik, bisa lepas landas dalam waktu cepat dan tak memerlukan banyak waktu untuk menaikkan pesawat.
Model pesawat masa depan NASA
2. Pesawat D 8 ‘double bubble’ karya Massachusetts Institute Technology (MIT) bisa mengangkut 180 orang — menggabungkan dua badan pesawat memasang tiga mesin jet turbofan di ekornya dengan posisi naik. Komponan penting pesawat ini adalah penggunaan material yang ringan dan mesin turbofan dengan rasio bypass yang ultratinggi.
Tim merancang D8 untuk melakukan pekerjaan yang sama dengan Boeing 737-800.
Pesawat penumpang masa depan NASA
3. Perusahaan Boeing mengembangkan Subsonic Ultra Green Aircraft Research (SUGAR), pesawat bermesin ganda dengan teknologi propulsi hibrid. Memiliki badan pesawat seperti tabung dan sayap yang membantu pesawat naik ke atas. Dibandingkan dengan pesawat yang ada saat ini, sayap SUGAR lebih panjang, namun bisa dilipat ketika parkir di bandara.
Pesawat masa depan NASA
4. Tim Northrop Grumman meramalkan kebutuhan terbesar masa depan adalah ketersediaan pesawat yang mengangkut 120 penumpang, dengan ukuran lebih kecil dan hanya membutuhkan landasan pacu pendek.
Tim menyebut pesawat ini sebagai Silent Efficient Low Emissions Commercial Transport (SELECT). Revolusi SELECT ada pada kinerjanya bukan pada tampilan. (umi)
Desain pesawat masa depan NASA

Pesawat Masa Depan


Penerbangan di Masa Depan Menurut NASA

NASA baru-baru ini mempresentasikan konsepnya mengenai pesawat terbang masa depan, lebih besar, lebih efisien, dan sedikit kelihatan aneh, tapi masih tidak seaneh dan bikin penasaran seperti konsep-konsep lain, termasuk di sini pesawat-pesawat bertenaga nuklir dan bandar udara di angkasa.





Konsep NASA ini didasarkan pada desain 
scramjet, dan mungkin akan menjadi kenyataan pada masa 20 tahun yang akan datang. Tapi tetap saja, beberapa dalam gambar-gambar itu sedikit kelihatan terlalu optimistis.






Gambar-gambar ini mungkin saja akan terwujud, yang menurut Max Kingsley-Jones dari Flight's Global dalam editorialnya, baru pada penerbangan di 100 tahun yang akan datang.
Pengamat penerbangan pertama Stanley Spooner punya sedikit masalah saat memutuskan cerita apa yang akan menjadi headline dalam isu di 100 tahun yang lalu - "Penerbangan Kedua Orang Inggris" menjadi headline pertama kami. Tapi kembali lagi pada pionir-pionir di masa lalu, apa yang Spooner predikisi untuk cerita pesawat ruang angkasa paling hebat seabad kemudian ?

Bahkan pengamat-pengamat entusias luar angkasa dan para penerbang di tahun 1909 akan sulit percaya dengan perkembangan dunia penerbangan yang dilukiskan dalam 100 tahun pertama majalah tersebut: bahwa pesawat terbang akan terjun dalam peperangan dalam 5 tahun, bahwa para penumpang akan bepergian menyeberangi Atlantik pada kecepatan dua kali kecepatan suara dalm 70 tahun, atau bahwa dalam 80 tahun pesawat luar angkasa bersayap akan diterbangkan ke orbit dan kembali ke bumi seperti 
glider.











Mungkin saja ada benarnya. Kita mungkin akan melihat beberapa pesawat-pesawat ini dan bahkan konsep-konsep yang lebih luas lagi di langit dalam abad ini. Bagaimana dan seperti apa penerbangan dalam 100 tahun ke depan selengkapnya silahkan baca di 
sini.

Artikel terkait:
Sejarah Pesawat Terbang.Pesawat-pesawat terbesar sepanjang masa.