Robotika
Kata “robot” diambil dari bahasa Ceko (Chech), yang memiliki arti “pekerja” (worker). Robot merupakan suatu perangkat mekanik yang mampu menjalankan tugas-tugas fisik, baik dibawah kendali dan pengawasan manusia, ataupun yang dijalankan dengan serangkaian program yang telah didefinisikan terlebih dahulu atau kecerdasan buatan (artificial intelligence).
Evolusi Robot Indonesia
Sejauh ini, belum ada data yang dapat memberikan kepastian mengenai kapan robot, sebagai teknologi, mulai dikembangkan di Indonesia. Namun mulai tahun 80-an, kebijakan nasional dalam pengembangan riset teknologi telah memberikan dukungan pada litbang permesinan otomatis dalam rangka mencermati dan menunjang Sumber Daya Manusia Indonesia yang memiliki minat dan kemampuan untuk menguasai teknologi robot. Salah satu wujud konkretnya adalah dikembangkannya sejumlah laboratorium, seperti MEPPO (Mesin Perkakas Teknik Produksi dan Otomatis) yang diprakarsai oleh BPPT bekerjasama dengan ITB, Industri strategis, serta LET (Laboratorium Elektronika Terapan) di LIPI.
Sejak dikembangkannya sejumlah laboratorium tersebut, beraneka macam permesinan otomatis / robot telah berhasil dikembangkan, diproduksi, serta dikomersilkan oleh berbagai industri, baik industri strategis maupun industri lainnya di Indonesia. Bahkan dalam pengembangan robot terbaru saat ini, telah dikembangkan jenis robot yang memiliki kemampuan untuk mengontrol seluruh sistem operasi suatu pabrik.
Sejak tahun 80an, pendayagunaan dan pemanfaatan permesinan otomatis telah dilakukan terutama melalui sejumlah industri strategis, diantaranya: PT PINDAD (sistem, peralatan, dll.), PT LEN Industri (IT, perangkat lunak, komputasi), PT Bharata dan PTBBI (pengecoran presisi untuk membuat bagian-bagian mesin), dll. Disamping itu, PT DI dan PT PAL, yang merupakan pengguna mesin otomatis, telah menguasai pengetahuan mengenai operasionalisasi robot untuk teknologi pesawat terbang dan teknologi perkapalan.
Kontes Robot Indonesia pertama kali diselenggarakan oleh Depdiknas tahun 1990. Sebelas tahun berikutnya, tepatnya pada tahun 2001, salah satu perwakilan dari Indonesia, yaitu tim B-Cak dari PENS-ITS telah berhasil mencapai prestasi yang spektakuler, yakni dengan keluar sebagai Juara Pertama pada Asia Pasific Broadcasting (ABU) Robocon yang diselenggarakan di Tokyo.
Pada tahun 2001 juga, Kementerian Ristek bersama dengan Depdiknas telah mempromosikan juara Kontes Robot Indonesia dalam pameran Ristek tahunan yaitu RITECH EXPO (Research, Inovation, Technology Expo) yang diselenggarakan di Balai Sidang Jakarta. Dalam pameran tersebut terlihat respon positif dan antusiasme dari masyarakat.
Menjelang Kontes Robot Indonesia 2004, Kementerian Ristek bekerjasama dengan Departemen Pendidikan Nasional - Fakultas Teknik Universitas Indonesia telah menyelenggarakan semiloka (seminar dan lokakarya) dengan tema “Peluang dan Tantangan Teknologi Robot di Indonesia”. Semiloka ini diselenggarakan dengan tujuan mempertemukan pihak-pihak yang berkepentingan dalam rangka pengembangan teknologi robot, agar para stakeholders tersebut dapat saling berbagi informasi terbaru dan berbagi pemahaman mengenai isu-isu teknologi robot yang sedang berkembang saat itu. Sasaran yang ingin di capai dengan semiloka ini adalah terdifusinya teknologi robot ke kalangan masyarakat yang lebih luas. Yang menjadi sasaran dalam semiloka tersebut adalah difusi teknologi robot pada kalangan masyarakat yang lebih luas. Dengan diselenggarakannya seminar ini, diharapkan kalangan mahasiswa dapat memperoleh informasi mengenai kebijakan-kebijakan yang telah ditetapkan pemerintah serta kebutuhan industri dalam pemanfaatan dan pendayagunaan robot. Disisi lain, pihak industri bisa mendapatkan informasi dan gambaran mengenai pemanfaatan dan pendayagunaan robot untuk keperluan dan kepentingan industry, serta prospek dan kemampuan yang para mahasiswa dalam mengembangkan teknologi robot.
Ketika Mobil Robot LIPI (MOROLIPI) Beraksi
Salah satu langkah untuk mencegah terjadinya ledakan bom adalah menjinakkan bom tersebut sebelum meledak. Namun menjinakkan bom merupakan salah satu pekerjaan yang memiliki risiko tinggi, karena bom tersebut dapat meledak kapan saja. Untuk mengurangi risiko jatuhnya korban jiwa dalam upaya menjinakkan bom, diperlukan sebuah security robot yang dapat menggantikan tugas manusia.
Selama ini upaya ”penjinakan” bom di Indonesia lebih banyak mengandalkan keahlian manusia, meski dalam beberapa kasus, ancaman bom dapat dipatahkan dengan menggunakan detector maupun alat penjinak bom.
Selama kurang lebih sepuluh tahun terakhir ini beberapa lembaga riset nasional mulai mengembangkan sistem detektor dan robot penjinak bom. Diantaranya Badan Tenaga Nuklir Nasional (Batan), yang telah mengembangkan sistem analisis bahan eksplosif, bahkan narkoba dengan cara mengaktifkan neutron cepat menggunakan generator neutron.
Generator neutron telah dikembangkan di Pusat Teknologi Akselerator dan Proses Bahan Batan sejak tahun 1998. Pendeteksian bahan eksplosif dilakukan dengan cara memancarkan berkas neutron yang telah diaktivasi ke obyek, misalnya, kontainer yang berisi bahan eksplosif.
Dari spektrum sinar gamma yang timbul, dapat diketahui isi kontainer tersebut. Karena bahan peledak terdiri dari unsur H, C, N, dan O dalam komposisi tertentu, maka melalui spektrum sinar unsur-unsur tersebut dapat terbaca.
Penanganan bom dan/atau bahan peledak juga dapat dilakukan dengan menggunakan robot. Sebagaimana yang telah dikembangkan oleh Endra Pitowarno dari Politeknik Elektronika Negeri, Surabaya Institut Teknologi 10 Nopember, yang telah menghasilkan tiga generasi robot penjinak bom sejak 2003.
Belakangan, dikembangkan robot untuk menekan risiko tersebut. Sebenarnya penggunaan robot semacam itu oleh pasukan penjinak bahan peledak atau Tim Gegana Polri sudah dilakukan sejak lama. Sayangnya, robot-robot yang digunakan masih produk impor, antara lain berasal dari Israel dan Inggris.
Pemanfaatan security robot semacam itu yang paling menghebohkan akhir-akhir ini tentu saja terjadi ketika penggerebekan teroris di Dusun Beji, Kedu, Temanggung, Jawa Tengah. Robot penjinak bom tersebut berjalan perlahan melintasi halaman dan menyelinap ke dalam rumah target. Robot ini mampu mengambil gambar, video bahkan memindahkan benda. Dengan pergerakannya membopong kamera, robot ini memuluskan langkah polisi dalam membekuk orang yang bersembunyi dalam rumah di tengah ladang jagung yang berhawa dingin tersebut, yang diduga sebagai mastermind dari serangkaian tindakan terror yang terjadi di Indonesia selama satu dekade terakhir (termasuk terror bom yang terjadi di Hotel The Ritz-Carlton dan JW Marriott, kawasan Mega kuningan, Jakarta 17 Juli lalu).
Robot yang digunakan ketika itu didatangkan khusus dari Israel dengan harga yang cukup tinggi, harga per unitnya bisa mencapai 1 Milyar Rupiah. Namun demikian, sebenarnya Estiko Rijanto, seorang peneliti mekatronika dan sistem kontrol di Pusat Penelitian Tenaga Listrik dan Mekatronik, Lembaga Ilmu Pengetahuan Indonesia (LIPI), telah berhasil menemukan dan merakit robot penjinak bom, yang diperkenalkannya pada tahun 2006. Robot pengintai tersebut diberi nama Morolipi v1.0, mobil robot penjinak bom yang dikembangkan oleh LIPI (Lembaga Ilmu Pengetahuan Indonesia). Prototipe Morolipi yang telah dipatenkan itu desain awalnya dirancang pada tahun 2004 yang kemudian dilanjutkan hingga tahun 2008. Namun demikian, menurut Menteri Riset dan Teknologi saat itu, Kusmayanto Kadiman, robot tersebut mungkin belum bisa digunakan karena masih tahap pengembangan.
Morolipi adalah unit mobil robot berlengan penjepit yang memiliki kemampuan memotong putus kabel yang juga robotik. Dalam uji coba menjinakkan bahan peledak, Morolipi terbukti dapat bekerja efektif, yaitu memotong rangkaian kabel berukuran diameter 2 mm yang dapat memicu ledakan sehingga bahan peledak nonaktif.
[sunting] Spesifikasi Morolipi v1.0
Panjang 1 meter, lebar 1 meter, dan tinggi 90 cm.
Berat 80-100 kg.
Morolipi memiliki kemampuan berjalan di permukaan yang datar ataupun menaiki tangga dengan kecepatan 3 meter per detik tanpa menggunakan energi karena menggunakan kopling elektrik.
. Dengan sarana yang terpasang itu, operator dapat mengendalikan Morolipi dari jarak maksimal 6 kilometer dengan menggunakan tongkat pengendali (joystick).
Memiliki dua ruas lengan dengan panjang 70 cm dan dapat bergerak bebas ke lima arah, berputar 360 derajat, juga menekuk.
Terdapat gripper sebagai alat penjepit dan pemotong kabel di bagian ujung lengannya.
Morolipi dilengkapi dengan artikulator, kamera, dan sensor inframerah yang dapat mengirimkan citra hasil penginderaannya secara telemetri sehingga gambarnya dapat ditampilkan pada layar komputer yang dioperasikan oleh operator.
Dengan sarana yang terpasang itu, operator dapat mengendalikan Morolipi dari jarak maksimal 6km dengan menggunakan tongkat pengendali atau joystick.
Memiliki rangkaian elektronik penggerak mulai kontak dengan roda penggerak, lengan, kopling elektronika mekanisme melewati tangga, serta pengontrol supervisor untuk memudahkan pengoperasian.
Bahan bakar yang digunakan untuk menggerakkan Morolipi berupa aki listrik.
Memiliki 4 roda vespa delapan inci, plus sabuk roda untuk membantu menaiki tangga tanpa terpeleset.
Kontrol robot menggunakan software dari Visual Basic 6.0.
Desain pembutan software menggunakan VB.6.0.
Pembuatan source code kontrol menggunakan VB.6.0.
Selain Program dengan Visual Basic, Morolipi juga dilengkapi dengan program mikrokontroller yang menggunakan IC AT89X51 atau keluarga dari MCS51. Disini digunakan dua bahasa pemrograman, yaitu bahasa C digunakan untuk kontrol mikro utama dimana sinyal yang dilempar dari komputer melalui komunikasi serial akan diolah ulang oleh mikro pada robot untuk menjalankan perintah komputer tersebut.
Program yang telah dibuat lewat komputer di download kedalam Chip (IC AT89X51) dengan menggunakan Downloader DT-HiQ Programmer namun sebelumnya setiap program yang dibuat tersebut baik menggunakan bahasa Assembly ataupun bahasa pemrograman C keduanya harus dikompile agar menghasilkan bilangan HEX.
Rangkaian elektronik yang dihubungkan dengan komunikasi serial untuk mengirim perintah dari komputer dengan menggunakan kabel komunikasi serial. Pesan perintah ditulis dengan menggunakan kode-kode tertentu yang telah didefinisikan terlebih dahulu atau dikenal juga dengan istilah artificial intelligence (kecerdasan buatan), misalnya dengan mengetikkan kode EPZ 384, kemudian software robot akan menerjemahkan perintah tersebut secara otomatis.
Rangkaian elektronik menggunkan wireless yang dihubungkan dengan komputer agar dapat melempar sinyal ke robot.
Rangkaian elektronik dengan wireless yang dihubungkan dengan robot untuk menerima sinyal dari komputer
Prototype robot penjinak bom yang dikontrol secara manual. Sedang dikembangkan kontrol jarak jauh agar keamanan operator dapat terjaga, karena melihat dengan kontrol manual jarak yang bisa dijangkau tidaklah terlalu jauh sehingga dapat membahayakan operator. Jarak aman bagi operator untuk melihat ketika melakukan kontrol manual adalah sekitar 500 M.
Robot penjinak bom yang menggunakan kontrol manual.
Desain dengan dimensi yang lebih besar yang rencananya akan dikontrol dengan menggunakan software kontrol jarak jauh yang dilengkapi dengan kamera (CAM).
Robot penjinak bom dimensi besar yang sementara masih dalam pembuatan.
Dalam uji coba menjinakkan bahan peledak, Morolipi terbukti dapat bekerja efektif, yaitu memotong rangkaian kabel berukuran diameter 2 mm yang dapat memicu ledakan sehingga bahan peledak nonaktif.
[sunting] Morolipi V.2.
Setelah Morolipi v1.0, kini LIPI juga sedang mengembangkan versi kedua dari Morolipi, yaitu Morolipi V.2., yang akan dimunculkan pada acara HUT LIPI ke-23. Untuk versi kedua, menurut LIPI akan ditingkatkan kemampuannya untuk membawa senjata api untuk menembak sasaran, sistem pendeteksi bahan peledak, membantu pasukan anti huru-hara untuk mengatasi kerusuhan, dan bahkan melengkapi robot dengan kemampuan membersihkan tangki bahan bakar minyak di pelabuhan. Pada Morolipi versi ini robot kemampuan robot meningkat, yakni membawa senjata api. Robot generasi baru ini dapat dikendalikan untuk mendekati dan menembak sasaran. Selain itu, akan dilakukan pula pengembangan ke arah non-militer, yaitu robot akan dilengkapi dengan alat pembersih tangki bahan bakar minyak di pelabuhan.”Morolipi generasi kedua ini akan mengalami penyempurnaan dalam sistem penggerak rodanya sehingga memungkinkan berjalan lebih mulus dan cepat,” urai Estiko.
Pada tahap berikutnya, Morolipi akan dilengkapi dengan sistem detector bahan peledak. Hal ini dilakukan dengan cara merancang sistem mekatronika dan sensor. Dengan serangkaian pengembangan ini, Morolipi diharapkan dapat menjadi garda depan di kancah pertempuran, robot pengintai. Untuk menjaga ketertiban Morolipi juga dapat membantu pasukan antihuru-hara dalam mengatasi kerusuhan.
Namun, untuk mencapai tahap itu diperlukan waktu beberapa tahun lagi karena prototype Morolipi perlu difabrikasi oleh industri dan digunakan oleh berbagai pihak, antara lain Polri dan TNI serta industri manufaktur dan migas, tutur Estiko.
Pengembangan robot penjinak bom atau mobil robot, dapat mengurangi ketergantungan pada pihak luar negeri. Menurut Estiko, yang saat ini menjabat sebagai Kepala Bidang Mekatronik di kantornya yang berbasis di Bandung, Jawa Barat, jika hasilnya sesuai dengan yang diharapkannya nantinya, harga Moropoli hanya separuh dari produk sejenis buatan luar negeri yang hampir mencapai angka 1 Miliar Rupiah per unit. Morolipi diproyeksikan lebih unggul karena fleksibel untuk dilakukan revisi, lanjut Estiko .
Perkembangan teknologi robot memang memiliki peran yang sangat penting di bidang militer. Tidak hanya di darat, seperti yang kita lihat dalam peristiwa di Temanggung, pemanfaatan teknologi robot juga terjadi pada pesawat-pesawat nirawak yang berperan sebagai mata-mata, bahkan agen serbu yang siap mengorbankan dirinya menggantikan nyawa personel.
Jika sebelumnya robot hanya dioperasikan di laboratorium ataupun dimanfaatkan untuk kepentingan industri, di negara-negara maju perkembangan robot mengalami peningkatan yang tajam, saat ini robot telah digunakan sebagai alat untuk membantu pekerjaan manusia. Seiring dengan berkembangnya teknologi, khususnya teknologi elektronik, peran robot menjadi semakin penting tidak saja dibidang sains, tapi juga di berbagai bidang lainnya, seperti di bidang kedokteran, pertanian, bahkan militer. Secara sadar atau tidak, saat ini robot telah “masuk” dalam kehidupan manusia sehari-hari dalam berbagai bentuk dan jenis. Ada jenis robot sederhana yang dirancang untuk melakukan kegiatan yang sederhana, mudah dan berulang-ulang, ataupun robot yang diciptakan khusus untuk melakukan sesuatu yang rumit, sehingga dapat berperilaku sangat kompleks dan secara otomatis dapat mengontrol dirinya sendiri sampai batas tertentu
Robotika adalah salah satu wacana teknologi untuk menuju peradaban yang lebih maju. Kebanyakan orang selalu beranggapan bahwa robot adalah kemajuan teknologi yang mampu menggeser tingkah laku seseorang untuk melakukan suatu tindakan. Dengan kemajuan yang pesat, maka kebutuhan akan SDM akan merosot tajam. Layaknya revolusi pada bangsa Eropa.
Sangat disayangkan selali bila titik ikon kemajuan teknologi tersebut tidak seiring dengan cepat nya pemahaman masyarakat pada umumnya yang selalu meng-analogikan robot adalah biang kerok hilangnya tenaga buruh untuk memacu pertumbuhan perekonomian.
Hal ini layaknya dua sisi perbedaan yang tidak akan bisa menyatu sama lain. Tapi bisa dicermati kembali, bila orang pelukis ternama akan tergusur karena kemampuan sebuah robot pelukis yang bisa membuat lukisan yang sama. Sebuah robot yang mampu untuk memahat patung yang hampir mirip pula. Seluruh ilustrasi tersebut memang sepintas robot bisa menguasai semua, tapi sangat disayangkan hasil kerja robot adalah tak lebih dari sebuah alat cetak dan seonggok besi aluminium dan komponen elektronika yang dirakit pada papan PCB. Sebuah lukisan dari Afandi tentunya akan bernilai ratusan juta beda ukuran dengan lukisan robot yang paling-paing laku di jual 10 ribuan di pinggir jalan.
Robot Bukanlah Pemegang Kekuasaan
Istilah robot yang dahulu kala berjulukan Robota, tak lain adalah kata lain dari seorang buruh. Lain halnya dengan seorang manusia yang diciptakan se-sempurna mungkin oleh sang Pencipta. Sampai kapanpun robot adalah pembantu manusia. Bila sang teknokrat menciptakan robot untuk menjadi penguasa dunia, semoga saja dia tidak berumur panjang. Namun robot adalah sarana untuk membangun peradaban yang lebh maju dan memberikan kemudahan bagi manusia sebagai penciptanya. Dengan hasil demikian maka seluruh kajian tentang robotika menjadi lebih memasyarakat diseluruh elemen masyarakat. Dan buakan menjadi momok yang harus ditakuti.
Robotika sebagai Ikon dan Kajian Ke-ilmuan
Robot adalah simbol dari kamajuan dari sebuah teknologi, karena didalam nya mencakup seluruh elemen keilmuan. Elektronika, Mekanika, Mekatronika, Kinematika, Dimamika, dan lain sebagainya. Hal ini menjadi suatu alasan yang sangat tepat untuk mengash ilmu didalam nya. Ikon pendidikan akan menjadi semakin termasyur bila selalu mengutamakan teknologi didalam nya. Sebuah ikon ini sangat penting untuk membangun semangat kemajuan, karena hal ini akan menjadi sebuah patokan awal dari sebuah perjuangan untuk selalu dilanjutkan kepada generasi penerus.
read comments (0)
Dasar Pembuatan Robot
Author: hack_90
12 22nd, 2009
Secara garis besar, tahapan pembuatan robot dapat dilihat pada gambar berikut:
Ada tiga tahapan pembuatan robot, yaitu:
Perencanaan, meliputi: pemilihan hardware dan design.
Pembuatan, meliputi pembuatan mekanik, elektonik, dan program.
Uji coba.
1. TAHAP PERENCANAN
Dalam tahap ini, kita merencanakan apa yang akan kita buat, sederhananya, kita mau membuat robot yang seperti apa? berguna untuk apa? Hal yang perlu ditentukan dalam tahap ini:
Dimensi, yaitu panjang, lebar, tinggi, dan perkiraan berat dari robot. Robot KRI berukuran tinggi sektar 1m, sedangkan tinggi robot KRCI sekitar 25 cm.
Struktur material, apakah dari alumunium, besi, kayu, plastik, dan sebagainya.
Cara kerja robot, berisi bagian-bagian robot dan fungsi dari bagian-bagian itu. Misalnya lengan, konveyor, lift, power supply.
Sensor-sensor apa yang akan dipakai robot.
Mekanisme, bagaimana sistem mekanik agar robot dapat menyelesaikan tugas.
Metode pengontrolan, yaitu bagaimana robot dapat dikontrol dan digerakkan, mikroprosesor yanga digunakan, dan blok diagram sistem.
Strategi untuk memenangkan pertandingan, jika memang robot itu akan diikutkan lomba/kontes robot Indonesia/Internasional.
2. TAHAP PEMBUATAN
Ada tiga perkerjaan yang harus dilakukan dalam tahap ini, yaitu pembuatan mekanik, elektronik, dan programming. Masing-masing membutuhkan orang dengan spesialisasi yang berbeda-beda, yaitu:
Spesialis Mekanik, bidang ilmu yang cocok adalah teknik mesin dan teknik industri.
Spesialis Elektronika, bidang ilmu yang cocok adalah teknik elektro.
Spesialis Programming, bidang ilmu yang cocok adalah teknik informatika.
Jadi dalam sebuah tim robot, harus ada personil-personil yang memiliki kemampuan tertentu yang saling mengisi. Hal ini diperlukan dalam membentuk Tim Kontes Robot Indonesia (KRI) atau Kontes Robot Cerdas Indonesia (KRCI). Bidang ilmu yang saya sebutkan tadi, tidak harus diisi mahasiswa/alumni jurusan atau program studi tersebut, misalnya boleh saja mahasiswa jurusan teknik mesin belajar pemrograman.
Untuk mengikuti lomba KRI/KRCI dibutuhkan sebuah tim yang solid. Tetapi buat Anda yang tertarik membuat robot karena hobby atau ingin belajar, semua bisa dilakukan sendiri, karena Anda tidak terikat dengan waktu atau deadline. Jadi Anda bisa melakukannya dengan lebih santai.
Pembuatan mekanik
Setelah gambaran garis besar bentuk robot dirancang, maka rangka dapat mulai dibuat. Umumnya rangka robot KRI terbuat dari alumunium kotak atau alumunium siku. Satu ruas rangka terhubung satu sama lain dengan keling alumunium. Keling adalah semacam paku alumunium yang berguna untuk menempelkan lembaran logam dengan erat. Rangka robot KRCI lebih variatif, bisa terbuat dari plastik atau besi panjang seperti jeruji.
Pembuatan sistem elektronika
Bagian sistem elektronika dirancang sesuai dengan fungsi yang diinginkan. Misalnya untuk menggerakkan motor DC diperlukan h-brigde, sedangkan untuk menggerakkan relay diperlukan saklar transistor. Sensor-sensor yang akan digunakan dipelajari dan dipahami cara kerjanya, misalnya:
Sensor jarak, bisa menggunakan SRF04, GP2D12, atau merakit sendiri modul sensor ultrasonik atau inframerah.
Sensor arah, bisa menggunakan sensor kompas CMPS03 atau Dinsmore.
Sensor suhu, bisa menggunakan LM35 atau sensor yang lain.
Sensor nyala api/panas, bisa menggunakan UVTron atau Thermopile.
Sensor line follower / line detector, bisa menggunakan led & photo transistor.
Berikut ini gambar sensor ultrasonik, inframerah, UVTron, dan kompas:
Pembuatan sistem elektronika ini meliputi tiga tahap:
Design PCB, misalnya dengan program Altium DXP.
Pencetakan PCB, bisa dengan Proboard.
Perakitan dan pengujian rangkaian elektronika.
Pembuatan Software/Program
Pembuatan software dilakukan setelah alat siap untuk diuji. Software ini ditanamkan (didownload) pada mikrokontroler sehingga robot dapat berfungsi sesuai dengan yang diharapkan.
Tahap pembuatan program ini meliputi:
Perancangan Algoritma atau alur program
Untuk fungsi yang sederhana, algoritma dapat dibuat langsung pada saat menulis program. Untuk fungsi yang kompleks, algoritma dibuat dengan menggunakan flow chart.
Penulisan Program
Penulisan program dalam Bahasa C, Assembly, Basic, atau Bahasa yang paling dikuasai.
Compile dan download, yaitu mentransfer program yang kita tulis kepada robot.
3. UJI COBA
Setelah kita mendownload program ke mikrokontroler (otak robot) berarti kita siap melakukan tahapan terakhir dalam membuat robot, yaitu uji coba. Untuk KRCI, ujicoba dilakukan pada arena seluas sekitar 4×4 meter dan berbentuk seperti puzzle. Dalam arena KRCI ini diletakkan lilin-lilin yang harus dipadamkan oleh robot cerdas pemadam api. Contoh gambar robot pemadam api Ted Larsorn dan arena Kontes Robot Cerdas Indonesia (KRCI).
Untuk lomba robot KRI, dibutuhkan ruangan yang lebih besar, yaitu sekitar 15×15 meter.
Karya : Teguh Junianto
read comments (0)
RoboT ManusiA
Author: riyan_05
12 21st, 2009
Robotika adalah salah satu wacana teknologi untuk menuju peradaban yang lebih maju. Kebanyakan orang selalu beranggapan bahwa robot adalah kemajuan teknologi yang mampu menggeser tingkah laku seseorang untuk melakukan suatu tindakan. Dengan kemajuan yang pesat, maka kebutuhan akan SDM akan merosot tajam. Layaknya revolusi pada bangsa Eropa.
Sangat disayangkan sekali bila titik ikon kemajuan teknologi tersebut tidak seiring dengan cepat nya pemahaman masyarakat pada umumnya yang selalu meng-analogikan robot adalah biang kerok hilangnya tenaga buruh untuk memacu pertumbuhan perekonomian.
Hal ini layaknya dua sisi perbedaan yang tidak akan bisa menyatu sama lain. Tapi bisa dicermati kembali, bila orang pelukis ternama akan tergusur karena kemampuan sebuah robot pelukis yang bisa membuat lukisan yang sama. Sebuah robot yang mampu untuk memahat patung yang hampir mirip pula. Seluruh ilustrasi tersebut memang sepintas robot bisa menguasai semua, tapi sangat disayangkan hasil kerja robot adalah tak lebih dari sebuah alat cetak dan seonggok besi aluminium dan komponen elektronika yang dirakit pada papan PCB. Sebuah lukisan dari Afandi tentunya akan bernilai ratusan juta beda ukuran dengan lukisan robot yang paling-paing laku di jual 10 ribuan di pinggir jalan.
Robot Bukanlah Pemegang Kekuasaan
Istilah robot yang dahulu kala berjulukan Robota, tak lain adalah kata lain dari seorang buruh. Lain halnya dengan seorang manusia yang diciptakan se-sempurna mungkin oleh sang Pencipta. Sampai kapanpun robot adalah pembantu manusia. Bila sang teknokrat menciptakan robot untuk menjadi penguasa dunia, semoga saja dia tidak berumur panjang. Namun robot adalah sarana untuk membangun peradaban yang lebh maju dan memberikan kemudahan bagi manusia sebagai penciptanya. Dengan hasil demikian maka seluruh kajian tentang robotika menjadi lebih memasyarakat diseluruh elemen masyarakat. Dan buakan menjadi momok yang harus ditakuti.
Robotika sebagai Ikon dan Kajian Ke-ilmuan
Robot adalah simbol dari kamajuan dari sebuah teknologi, karena didalam nya mencakup seluruh elemen keilmuan. Elektronika, Mekanika, Mekatronika, Kinematika, Dimamika, dan lain sebagainya. Hal ini menjadi suatu alasan yang sangat tepat untuk mengash ilmu didalam nya. Ikon pendidikan akan menjadi semakin termasyur bila selalu mengutamakan teknologi didalam nya. Sebuah ikon ini sangat penting untuk membangun semangat kemajuan, karena hal ini akan menjadi sebuah patokan awal dari sebuah perjuangan untuk selalu dilanjutkan kepada generasi penerus.
Jika dulu robot identik dengan mesin berbentuk kaku, tidak demikian dengan saat ini. Para pengembang robot mulai menciptakan robot yang memiliki bentuk menyerupai manusia (humanoid).
Tak hanya wujudnya yang menyerupai manusia, robot-robot ini juga melakukan berbagai aktivitas yang lazim dilakukan manusia. Simak daftar 6 robot humanoid yang memiliki fungsi unik berikut ini:
6 Robot ‘Mirip Manusia’ Terunik
1. Simroid
Robot ini menyerupai wanita muda yang menarik, berambut panjang serta mempunyai tinggi 160 cm. Robot besutan Jepang ini sengaja dirancang untuk latihan praktik di sekolah kedokteran gigi. Simroid dapat menunjukkan ekspresi tidak nyaman dengan mengerutkan dahi.
Simroid juga mampu bilang ‘itu sakit’ dan berteriak ‘ouw’ ketika bor sang dokter gigi mengenai sarafnya. Kehadiran robot ini membantu calon dokter gigi untuk belajar memahami perasaan pasien dan berusaha untuk meningkatkan keahliannya serta memperlakukan pasien secara manusiawi.
2. Robot ‘Flu Babi’
Untuk urusan robot, Jepang memang tak ada matinya. Kali ini ahli robot di Negeri Sakura ‘melahirkan’ robot ‘flu babi’. Robot ini dirancang untuk membantu petugas kesehatan mendiagnosa gejala-gejala orang yang terkena flu babi dan cara perawatannya.
Robot ini akan menunjukkan gejala-gejala seperti panas berkeringat, merintih, menangis dan kejang. Jika tidak segera dirawat, gejalanya semakin parah dan kemudian si robot berhenti bernafas alias meninggal. Ini untuk menunjukkan betapa bahayanya jika penderita flu babi tidak ditangani secara baik.
3. Ibn Sina
Eksis di situs jejaring sosial bukan lagi monopoli manusia. Robot bernama Ibn Sina ini pun tak ingin ketinggalan. Robot yang dikembangkan para ahli dari Interactive Robots and Media Lab (IRML) University of the United Arab Emirates bersama ahli dari Jerman dan Yunani ini memiliki kemampuan untuk melakukan percakapan secara real-time dengan orang-orang yang mengajaknya chatting lewat Facebook ataupun IRML dengan modul bahasa yang dimilikinya.
Robot pria berjenggot ini juga mampu menjadi asisten belanja di mall ataupun resepsionis. Ibn Sina dijejali modul software sehingga mampu melihat, mendeteksi wajah, memahami percakapan, serta merespon semuanya itu.
4. Aiko
Robot bernama Aiko ini tak hanya cantik parasnya, tapi juga pintar. Aiko sengaja diciptakan oleh seorang ilmuwan di Kanada bernama Le Trung untuk dijadikan sebagai pendamping hidup. Robot ini memiliki kemampuan berbahasa Inggris dan Jepang serta mampu memecahkan soal-soal matematika. Trung mengklaim bahwa Aiko bisa memahami dan mengatakan 13.000 kalimat dalam bahasa Inggris dan Jepang. Aiko terus disempurnakan agar siap menjadi pendamping yang sempurna untuknya.
5. Saya
Lagi-lagi Jepang menelurkan sebuah robot humanoid jempolan. Kali ini yang unjuk gigi adalah robot wanita bernama Saya. Si Saya didaulat untuk mengerjakan tugas-tugas yang biasa dilakukan sekretaris. Selain menjadi sekretaris, Saya juga bisa menjadi guru dan juga resepsionis, dengan didukung kemampuan multibahasa dan juga berbagai ekspresi wajah. Saat ini, Saya yang dibalut busana berkerah warna kuning menjalankan tugasnya sebagai resepsionis di Tokyo University.
6. HRP-4C
Satu lagi robot humanoid Jepang yang mengundang decak kagum, yakni HRP-4C. Robot cantik ini memulai debutnya sebagai model yang berlenggak-lenggok di catwalk. Robot ini terinspirasi dari karakter di komik manga. Setelah menapaki karir di dunia fashion, robot dengan tinggi 158 cm ini pun kembali mencuat dengan menjadi model baju pernikahan.
Robot ini berdandan cantik layaknya mempelai wanita dalam perhelatan bertajuk 2009 Yumi Katsura Paris Grand Collection di Osaka, Jepang. Gerak tubuhnya pun luwes, lemah gemulai bak seorang model manusia. Robot ini diharapkan dapat terus eksis di dunia fashion dan hiburan. detik.
read comments (0)
Kelompok Robot Mini Tirukan Semut
Author: FATCHUR RIZQI ARISANDI
12 21st, 2009
Jakarta - Robot buatan manusia tidak melulu berukuran besar atau raksasa layaknya di film Transformers. Beberapa ilmuwan juga kian giat membuat robot-robot mungil yang baik ukuran dan tingkahnya hampir sama dengan semut.
Microbot seperti ini nantinya difungsikan untuk mengoleksi data dalam berbagai tujuan seperti misi mata-mata atau medis. Berbagai institut teknologi di Swedia, Spanyol, Jerman, Italia dan Swiss bahkan dikabarkan ramai-ramai membuat robot kerdil itu.
Dikutip detikINET dari FoxNews, Kamis (3/9/2009), robot yang berukuran sekitar 4 mm ini memakai tenaga matahari sebagai sumber daya. Tiga kakinya digunakan untuk bergerak sedangkan satu sebagai sensor sentuh.
Jika bekerja sendirian, robot tersebut tidak bisa berbuat banyak. Namun berbasis konsep I-SWARM (intelligent small-world autonomous robots for micro-manipulation), sekumpulan robot bakal bekerja sama layaknya kelompok serangga.
Menurut konsep tersebut, sejumlah besar robot akan berinteraksi dengan lingkungan dan berkomunikasi satu sama lain melalu infra merah kala menjalankan tugas tertentu. Ini mirip-mirip dengan cara kerja kawanan semut.
Robot Tangan yang Fleksibel
Author: rafqi_ahmad
12 21st, 2009
Dalam kehidupan masyarakat modern, istilah robot sudah terasa begitu akrab. Meskipun kehadirannya mungkin masih jarang dijumpai di banyak tempat. Tapi setidaknya akan segera paham jika disebutkan tentang robot. Sementara, bagi kebanyakan orang, robot seringkali diartikan sebagai mesin berbentuk manusia yang bisa melakukan gerakan atau tindakan seperti manusia. Ini merupakan imej yang ditimbulkan oleh kebanyakan film bergenre science fiction.
Lalu definisi robot itu sendiri bagaimana? manurut situs inventors.about.com adalah merupakan perangkat otomatis yang menyelenggarakan fungsi yang biasanya di anggap berasal dari manusia atau sebuah mesin yang berbentuk manusia. Mungkin sebuah definisi yang kurang tepat karena ada beberapa robot yang tidak berbentuk menyerupai manusia atau bagian daro organ manusia maupun menggantikan pekerjaan-pekerjaan yang semula dilakukan oleh manusia meskipun sebagian besar tujuan pencipyaan robot adalah untuk itu. Karena kenyatannya robot-robot yang telah berhasil dibuat dan kemudian menjadi terkenal. Justru bukan robot menyerupai bentuk tubuh atau bagian organ manusia. Misalnya robot anjing AIBO ERS-210 yang dibuat perusahaan SONY.
Robot Tangan yang Fleksibel
Sebuah robot berbentuk tangan diciptakan oleh para mahasiswa dari Virginia Tech’s Robotics and Mechanisms Laboratory, Amerika Serikat. Robot tangan tersebut mampu mengangkat kaleng berat berisi makanan dengan gerakan yang fleksibel, tidak kaku seperti robot pada umumnya.
Robot bernama RAPHaEL (Robotic Air-Powered Hand with Elastic Ligaments) itu dibuat dengan mesin berkekuatan udara. Robot dihubungkan dengan tabung berisi udara dan dikendalikan operator untuk membuat tekanan pada jari-jari robot.
Yang membuat RAPHaEL unik adalah jari-jarinya tidak dikontrol satu persatu, jadi hanya membutuhkan satu penggerak dan jari-jari lainnya juga akan bergerak.
Penemuan ini sangat menarik, karena jari-jari robot terlihat bergerak seperti jari manusia dan tidak kaku, Robot tangan ini juga memenangkan juara pertama dalam Compressed Air and Gas Institute Innovation Awards Contest di Amerika Serikat pada 2008/2009.
Karya :
Rafqi Ahmad
read comments (0)
Robot di Masa Depan
Author: Riyanto Wibowo
12 20th, 2009
Pasti kamu pernah bertanya-tanya seperti apakah robot di masa depan. Dan kita juga sering menghayal, misalnya seandainya saja ada robot yang bisa mengemudikan kendaraan ketika kita ingin berpergian atau seandainya saja ada robot yang bisa menggantikan posisi kita saat mengerjakan kegiatan sehari-hari.
Ternyata sekarang hayalan itu telah menjadi kenyataan. Jika kita menginginkan robot pengemudi mobil, saat ini para peneliti di Massachusetts Institute of Technology (MIT) sedang menciptakan sebuah in-car personal robot yang diberi nama Affective Intelligent Driving Agent (AIDA). Robot ini didesain untuk menawarkan semacam fungsi sebagai co-driver yang bersahabat. Beragam teknologi dalam jumlah besar akan digunakan untuk mengendalikan kendaraan hingga pada akhirnya mengarah pada teknologi kendaraan yang dapat mengemudi sendiri.
Affective Intelligent Driving Agent (AIDA)
Pernahkan kamu menonton film Surrogates? Film ini menceritakan masa depan dimana semua kegiatan manusia digantikan oleh robot kloningan manusia tersebut. Dan ternyata, sebuah perusahaan di Tokyo yang bernama Kokoro telah mampu membuat robot kloningan yang sangat mirip dengan manusia. Robot kloningan tersebut akan dibuat semirip mungkin dengan si pemesan, baik dari segi wajah, rambut, mata, dan tubuh. Yang mungkin akan membuat si pemesan semakin tercengang adalah karena si robot kembarannya tersebut juga bakal memiliki suara, ekspresi wajah, dan gerak gerik tubuh bagian atas yang mirip dengan dirinya. Mungkin robot kloningan ini merupakan asal mula dari robot kloningan yang ada di film Surrogates.
Robot Kloningan
Revolusi perkembangan teknologi robot memang sungguh cepat saat ini, bahkan banyak proyek pengembangan teknologi sudah dipersiapkan untuk banyak kebutuhan manusia di masa depan. Bisa jadi banyak aspek dan keseharian kita di masa depan tidak terlepas dari teknologi robot dan sistem otomatisasi kerja yang sangat canggih disegala bidang.
Robot tak cuma pintar menjalankan perintah saja, seperti yang sekarang banyak dipekerjakan di industri mobil dan elektronik. Robot di masa depan diramalkan lebih mandiri, mampu membuat analisa dan menambil keputusan. Di bawah ini merupakan robot-robot yang diramalkan akan menemani kita di masa depan.
Robot mainan anjing ini dibuat memiliki perilaku sama dengan aslinya
Bahkan dalam aspek rumah tanggapun sangat dimungkinkan sistem otomatisasi robot akan banyak membantu pekerjaan dan kegiatan manusia seperti baby sitter.
Anakpun bisa diasuh oleh baby sitter robot
Pelayan dan koki yang masak pun bisa digantikan robot
wah Kenny G atau Dave Coz bisa pensiun gini caranya
Namun relakah pekerjaan atau profesi kita suatu hari nanti akan digantikan oleh robot-robot ini? Mungkin bagi seorang bos akan memilih robot-robot ini dibandingkan dengan kita, karena robot-robot ini lebih mudah diperintah dan tidak pernah membangkang. Mau tidak mau, kita harus siap berkompetisi dengan robot-robot ini dalam bekerja dan menjalani profesi kita. Namun bagaimanapun juga manusia memiliki banyak keunggulan yang masih susah untuk digantikan oleh robot sepintar apapun, yaitu perasaan, nalar dan emosi termasuk didalamnya cinta kasih.
Sumber : Detikinet.com, Rileks.com, Ruanghati.com
karya :
Riyanto Wibowo
read comments (0)
Pengendalian Lengan Robot Berbasis Mikrokontroler AT89C51 Menggunakan Transduser Ultrasonik
Author: Widya Agsari
12 20th, 2009
Perkembangan teknologi robotika telah membuat kualitas kehidupan manusia
semakin tinggi. Saat ini perkembangan teknologi robotika telah mampu
meningkatkan kualitas maupun kuantitas produksi berbagai pabrik. Teknologi
robotika juga telah menjangkau sisi hiburan dan pendidikan bagi manusia.
Salah satu cara menambah tingkat kecerdasan sebuah robot adalah dengan
menambah sensor pada robot tersebut. Makalah ini memaparkan salah satu sudut
teknologi robotika yaitu teknologi robot yang memiliki kemampuan menghindari
halangan (
obstacle avoidance robot
). Kemampuan menghindari halangan dapat
diberikan pada sebuah robot dengan berbagai cara seperti menggunakan kamera atau
menggunakan detektor halangan.
Penggunaan kamera sebagai sensor akan meningkatkan kemampuan robot
untuk menentukan posisi sebuah obyek (Nurbiyanto, 2001). Namun penggunaan
kamera dengan sistem pengolahan citra secara digital akan menambah beban
komputasi bagi mikrokontroler sehingga kemampuan robot mengalami penurunan
pada sisi yang lain seperti pada kecepatan proses.
Artikel ini memaparkan penggunaan tranduser ultrasonik sebagai detektor
halangan dalam pengendalian sebuah lengan robot. Penggunaan transduser ultrasonik
sebagai pengukur jarak halangan dapat dilakukan dengan dua metode. Metoda yang
pertama adalah dengan mengukur selang waktu pengiriman dan penerimaan gema
ultrasonik. Metoda kedua adalah dengan mengukur kekuatan sinyal pantulan.
Pengukuran jarak dengan metoda mengukur selang waktu penerimaan gema
ultrasonik akan menghasilkan pengukuran yang cukup presisi (Firmansyah, 2000).
Namun penggunaan metoda ini menuntut pengguna untuk mengatur nilai ambang
yang menentukan batas minimal kekuatan gema ultrasonik ketika halangan telah
terdeteksi melalui sebuah potensiometer yang nilainya sering bergeser akibat
bertambahnya umur sensor. Pengukuran dengan metoda ini juga menuntut
mikrokontroler untuk melakukan proses menunggu datangnya gelombang pantulan.
Waktu menunggu ini akan cukup mengganggu bagi mikrokontroler yang diberi
beban tugas yang cukup kompleks seperti mengendalikan gerakan robot.
Metoda penentuan jarak halangan melalui pengukuran tingkat kekuatan
gelombang pantulan memberikan beberapa keuntungan. Pada metode ini
mikrokontroler tidak perlu melakukan proses menunggu gelombang pantulan tetapi
cukup menunggu proses konversi data kekuatan sinyal dari analog ke digital.
Pengguna juga tidak perlu mengeset potensiometer secara manual. Kelemahan
metode ini adalah data hasil pengukuran yang didapatkan kurang presisi.
Perancangan Sistem
Sistem yang dirancang menggunakan lengan robot ROB3 sebagai basisnya.
Lengan robot ROB3 digerakkan oleh enam buah motor DC. Posisi sudut setiap poros
diketahui melalui potensiometer. Sebagai penggerak motor dirancang rangkaian
driver yang tersusun atas IC L293D serta driver yang tersusun atas transistor
darlington TIP 120 dan TIP 125.Untuk membangkitkan frekuensi ultrasonik
digunakan rangkaian multivibrator dari IC 555. Gelombang pantulan yang diterima
oleh transduser penerima mengalami proses penyesuaian isyarat melalui untai
penguat, penyearah serta filter. Keluaran untai penyesuai isyarat serta keluaran
potensiometer diubah menjadi digital oleh IC ADC0809. Mikrokontroler
menggunakan data-data tersebut untuk menentukan bentuk gerakan serta kecepatan
gerakan yang dilakukan oleh robot. Setiap motor digerakkan oleh isyarat
Pulse Width
Modulation
yang dihasilkan Mikrokontroler. Gambar 1 menunjukkan skema lengan
robot ROB3. Gambar 2 menunjukkan diagram kotak sistem pengendalinya.
Pemancar Gelombang Ultrasonik
Pemancar gelombang ultrasonik disusun oleh sebuah transduser ultrasonik
yang diberi gelombang kotak dengan frekuensi sekitar 40 KHz. Gelombang kotak
dihasilkan oleh untai multivibrator yang disusun oleh IC 555 yang bekerja secara
astable. Rangkaian pemancar ultrasonik ditunjukkan gambar 3.
Penerima Gelombang Ultrasonik
Metode pengukuran jarak halangan yang digunakan adalah dengan mengukur
kekuatan sinyal pantulan. Gelombang pantulan ditangkap dengan sebuah transduser
penerima. Transduser penerima mengeluarkan isyarat sinus yang amplitudonya
tergantung dari jarak halangan dengan transduser. Untai penerima Gelombang
ultrasonik berfungsi memperkuat, menyearahkan serta menapis keluaran transduser
penerima sebelum dikirim ke ADC. Penyearahan isyarat dilakukan oleh untai
penyearah presisi yang dibantu dengan dua buah untai buffer serta sebuah penguat
subtractor untuk memperoleh penyearahan gelombang penuh. Untai penyesuai
isyarat akan memberikan penguatan total sekitar 150 kali dan jarak halangan terjauh
yang masih terdeteksi adalah sekitar 100 cm. Gambar 4 menunjukkan blok diagram
penyesuai isyarat.
Penguat inverting bertugas sebagai penguat pertama dengan nilai penguatan
sekitar 46 kali. Untai penyearah presisi yang dirancang memiliki penguatan sekitar 2
kali. Untai pengurang mempunyai penguatan 1,5 kali. Untai filter pelewat rendah
orde dua dirancang memiliki nilai frekuensi
cut-off
sekitar 60 Hz untuk
menyesuaikan dengan kebutuhan. Keluaran untai penyesuai isyarat adalah isyarat
DC yang siap diubah menjadi digital. Gambar 5 sampai dengan 9 masing-masing
menunjukkan untai penguat
inverting
, penyearah presisi, buffer, penguat
subtractor
serta filter yang digunakan dalam penelitian ini.
Untai ADC
Untai ADC digunakan untuk mengubah keluaran potensiometer menjadi data
digital serta untuk mengubah keluaran penyesuai isyarat tranduser ultrasonik menjadi
data digital. IC ADC0809 memiliki delapan kanal input analog. Enam kanal input
ADC0809 digunakan untuk potensiometer dan satu kanal input digunakan untuk
keluaran tranduser ultrasonik. Proses pengaksesan kanal ADC dilakukan satu persatu
secara bergantian sesuai kebutuhan. Pengendalian ADC oleh mikrokontroler
dilakukan melalui sinyal READ, WRITE serta CS.
Sistem Minimal AT89C51
Mikrokontroler AT89C51 mempunyai tugas mengendalkan seluruh sistem.
Mikrokontroler juga bertugas menerima program dalam format heksadesimal dari
komputer dan menyimpannya di RAM eksternal. Sistem minimal mikrokontroler
dilengkapi dengan PPI 8255 untuk menambah port keluaran. Mikrokontroler
membangkitkan sinyal PWM untuk menggerakkan motor serta sinyal-sinyal
pengendali ADC dan driver motor. Mikrokontroler menerima data digital dari
ADC0809 yang berasal dari sensor potensiometer dan transduser ultrasonik.
Driver Motor IC L293D
Sebuah IC L293D berisi empat buah push-pull. Setiap dua buah push-pull
dapat digunakan sebagai sebuah untai H-bridge dan dapat diaktifkan dengan sebuah
sinyal enable. Dalam penelitian ini digunakan metode DC Chopper kelas E sehingga
untai yang dirancang ditunjukkan gambar 10. IC L293D mampu beroperasi pada
tegangan 4,5 V sampai 36 V. Besarnya arus yang dapat ditarik adalah 600mA pada
kondisi normal serta 1,2 A pada arus puncak (sesaat).
Driver Motor Transistor TIP 120 dan TIP 125
IC L293D hanya mampu menyediakan arus sekitar 600 mA secara kontinyu
sehingga untuk motor yang menarik arus diatas nilai tersebut dirancang untai H-
bridge dengan transistor darlington sebagai basisnya. Gambar 11 menunjukkan
rancangan driver motor dengan transistor TIP 120 dan TIP 125. Untai ini dapat
menyediakan arus sampai sekitar 5 A. Frekuensi kerjanya di bawah 300 Hz.
INTISARI
Kemampuan menghindari halangan diperlukan oleh sebuah robot yang
bekerja pada lintasan yang sering terganggu.
Lengan robot dapat dilengkapi dengan tranduser ultrasonik sebagai detektor
halangan. Jarak halangan dapat diketahui dengan mengukur kekuatan gelombang
ultrasonik yang dipantulkan oleh halangan. Hasil pengukuran jarak halangan
digunakan oleh mikrokontroler untuk menentukan arah serta kecepatan gerakan yang
dikerjakan oleh robot. Kecepatan gerakan robot dikendalikan oleh mikrokontroler
dengan cara mengeluarkan isyarat PWM yang sesuai.
Hasil pengamatan menunjukkan bahwa transduser ultrasonik dapat
mendeteksi halangan yang berbentuk silinder pada lintasan robot yang berbentuk
setengah lingkaran dengan jari-jari sekitar 25 cm. Halangan di sisi luar lintasan dapat
dikenali oleh sensor sejak awal sedangkan halangan di sisi dalam lintasan terdeteksi
setelah jarak sensor dengan halangan 10 cm. Daerah kerja robot yang diperbolehkan
mendapat sebuah halangan adalah sekitar 75% dari daerah kerja seluruhnya.
mendapat sebuah halangan adalah sekitar 75% dari daerah kerja seluruhnya
Karya :
Widya Agsari
read comments (0)
Robot Bawah Air Lebih Efisien
Author: Feby Nur Fattah
12 20th, 2009
Banyak robot yang telah diciptakan oleh ilmuwan seiring perkembangan teknologi yang semakin pesat. Mulai dari yang sederhana sampai yang paling rumit. Mulai dari yang multifungsi sampai yang hanya bisa menjalankan satu eksekusi. Wilayah kerjanya pun mencakup darat, laut dan udara. Namun, perkembangan teknologi dalam air kurang mendapat perhatian dari masyarakat. Masih banyak kegiatan bawah air yang dilakukan sendiri oleh manusia tanpa bantuan robot, seperti pengamatan bawah laut. Pengamatan bawah laut yang dilakukan manusia memiliki beberapa resiko yaitu adanya area-area yang sulit dijangkau manusia serta resiko bahaya yang tinggi akibat serangan hewan buas. Oleh karena itu, robot yang mampu bergerak bebas di dalam air sangat dibutuhkan untuk membantu tugas manusia.
Secara umum, berdasarkan sistem pengendaliannya robot bawah air dibagi menjadi menjadi dua jenis yaitu Autonomous Underwater Vehicles (AUV) dan Remoted Operated Vehicles (ROV). AUV adalah kendaraan bawah air yang mampu bergerak di dalam air secara otomatis tanpa adanya kontrol langsung dari manusia. Sedangkan ROV adalah kendaraan bawah air yang gerakannya dikendalikan secara langsung oleh manusia melalui remote kontrol dari atas permukaan air. Robot penyelam termasuk dalam jenis robot atau kendaraan bawah air yang tergolong ROV.
Robot penyelam adalah robot yang mampu bergerak di dalam air. Gerakan yang dapat dilakukan adalah naik dan turun/menyelam. Gerakan ke atas timbul akibat adanya gaya dorong dari putaran propeller, sedangkan untuk gerak menyelam disebabkan oleh berat beban dari robot (saat kondisi motor off). Robot ini dikontrol dengan menggunakan remote kontrol 4 kanal yang menggunakan RF. Robot dijalankan untuk 5 keadaan yaitu start, naik, turun, kembali ke posisi semula, dan menghentikan robot. Perencanaan sistem meliputi perencanaan driver, mekanik, dan software. Sebagai penggerak propeller-nya, robot ini menggunakan motor DC 9 volt. Robot ini menggunakan mikrokontroler AT89C2051. Perencanaan mekanik dari robot meliputi perangkaian gear box, shielding poros propeller, dan perancangan beban. Shielding poros propeller menggunakan karet oring. Beban yang digunakan dipasang di sekeliling robot agar lebih seimbang. Robot ini diuji di dalam akuarium dengan kedalaman sekitar 70 cm. Saat pengujian diperoleh kecepatan gerak naik rata - rata 16,29 cm/detik dengan massa total robot sebesar 1510 gram, dan volume robot 1225 cm³. Karena dasar badan robot berbentuk datar, maka jarak minimal propeller 1,8 cm.
Salah satu contoh pemanfaatan robot bawah air, khususnya robot ROV, adalah seperti yang digunakan oleh PT. Ratu Prabu Energy Tbk (ARTI). ROV tipe Vector M5 merupakan robot portable yang beroperasi di bawah air untuk melaksanakan pekerjaan eksploitasi, inspeksi, perbaikan serta perawatan. Dengan daya selam 1.000 meter alat ini dikhususkan bagi proyek minyak dan gas bumi lepas pantai.
Menurut Daniel Yudi, Marine Departement Manager ARTI, dibanding penyelam manusia, robot ini dapat mempersingkat waktu kerja dan mengurangi risiko kecelakaan khususnya dalam menghadapi kondisi laut yang tidak menentu. “Dengan menggunakan robot ini, biaya operasional bisa dipangkas hingga 50%,” ujarnya.
Rumah Masa Depan - Penggabungan Pengenal Suara dan Robot
Author: Thomas Kurniawan
12 19th, 2009
Pengenal Suara (Voice Recognition) adalah sebuah aplikasi atau program yang dapat mengkonversikan suara(melalui sensor suara) menjadi sebuah text. Sedangkan robot, adalah suatu perangkat mekanik untuk melaksanakan suatu pekerjaan yang biasanya dikerjakan oleh manusia. Misalnya melakukan pengecatan mobil. Robot ini dilengkapi oleh perangkat mesin atau komputer baik sederhana maupun komplek yang mampu mengontrol gerakannya, dijalankan menggunakan command text. Dari sini dapat disimpulkan bahwa dari suara dapat dikonversi menjadi text command yang kemudian digunakan untuk menjalankan sebuah robot.
Sebelumnya pengaplikasian voice recognition sudah digunakan di dalam dunia otomotif. Sebagai contoh, di dalam film 2012 yang baru-baru ini keluar di bioskop Indonesia, ada sebuah mobil (Bentley, lupa tipenya) yang dapat menyala (melakukan electronic starter) hanya dengan mengatakan “Engine Start!”). Betapa mudahnya bukan? Tanpa perlu memutar kunci, cukup dengan memerintah mobil untuk menyalakan mesin.
Dari teori dan contoh tersebut di atas, muncul ide di dalam benak penulis untuk membuat sebuah rumah, yang dikombinasikan dengan voice recognition dan pengaplikasian gerakan dari robot sederhana (hidrolik). Secara logika dapat dibayangkan apabila kita tidak perlu repot membuka pintu rumah saat sedang membawa banyak barang belanjaan, cukup dengan mengatakan “Buka Pintu!”, maka pintu akam terbuka untuk anda secara otomatis. Contoh lain, kita dapat menyalakan lampu cukup dengan mengatakan “Nyalakan Lampu!”, maka lampu akan menyala secara otomatis. Bayangkan bagaimana mudahnya tinggal di dalam rumah yang semuanya dapat dilakukan hanya dengan perinatah suara.
Secara sistem, diperlukan beberapa alat, antara lalin:
1. Voice Input/Voice Receiver
Alat ini digunakan untuk menangkap suara. Dari sini kemudian suara diproses menggunakan sebuah converter suara menjadi text
2. Voice to Text Converter
Voice to text Converter adalah alat yang digunakan untuk mengubah bentuk data yang diterima oleh voice receiver diubah bentuknya menjadi data text. Data hasil konversi tadi kemudian akan diteruskan menjadi sebuah command untuk menggerakan robot yang berupa lengan hidrolik. Alat ini biasanya berbentuk chip kecil(microproccessor).
3. Lengan Hidrolik (Hidrolic arm)
Hidrolik ini yang nantinya akan menggerakkan pintu untuk membuka dan menutup secara otomatis.
Cara kerjanya adalah sebagai berikut:
Sistematika di atas sangat sederhana, karena hanya menggunakan lengan hidrolik. Namun bisa diterapkan untuk membuka jendela, lemari, laci, dan lain-lain. Penerapan yang sama untuk menyalakan lampu, hanya saja alat yang digunakan sedikit berbeda, yakni dapat digunakan switch atau alat lain yang dapat menyambung-putuskan aliran listrik. Dapat juga dikembangkan lagi menjadi lebih canggih, misalnya menyalakan kompor untuk memasak air secara otomatis dan mematikannya pun secara otomatis (dengan kombinasi dengan sensor panas). Masih banyak kegiatan lain yang dapat dilakukan dengan menerapkan sistem ini.
Betapa nyamannya tinggal di dalam rumah yang serba otomatis. Membuka pintu tanpa beranjak dari kursi anda, memasak air tanpa meninggalkan pekerjaan anda, dan masih banyak lagi. Semoga informasi ini bermanfaat bagi pembaca sekalian. Terima kasih.
Sumber:
http://instruct1.cit.cornell.edu/Courses…
Robot laba-laba penjejak garis (Hexapod Line Follower)
Author: Dwi Putra Budi Wijaya
12 19th, 2009
Modul yang digunakan
-Delta Robo CPU
-Delta DC Driver
-Hexapod Mechanic
-Battery Pack
-ISP Cable
-Delta IR Line Sensing
Teori Dasar
Phototransistor TOPS030ATB adalah sebuah sensor inframerah yang dilengkapi dengan lapisan pelindung yang juga mereduksi pengaruh cahaya-cahaya liar selain batasan panjang gelombangnya yaitu 750–1050 nm. Pancaran cahaya dari LED Infrared yang dipantulkan ke garis akan diserap dan tidak dipantulkan ke detektor namun apabila cahaya menimpa bidang berwarna terang akan dipantulkan kembali ke detektor(phototransistor). Pada saat pancaran cahaya yang dipantulkan diterima oleh phototransistor maka sensor ini akan berada pada kondisi saturasi sehingga basis dari transistor yang terhubung pada bagian kolektornya akan terhubung ke ground. Transistor akhir tersebut akan cut off, arus bias akan mengalir dari resistor ke bagian keluaran sensor sehingga berlogika 1. Sebaliknya bila pancaran cahaya tidak diterima, maka phototransistor akan berada pada kondisi cut off. Arus bias akan masuk melalui resistor ke basis transistor akhir sehingga transistor ini berada pada kondisi saturasi dan keluaran sensor berlogika 0.
Cara Kerja
Dalam robot ini, bagian otak adalah Delta Robo CPU yang merupakan sistem mikrokontroler khusus untuk keperluan robotik. Sistem mikrokontroler ini sudah dilengkapi dengan konektor-konektor untuk sensor maupun pengendali motor. Sistem mikrokontroler sebagai otak karena sistem ini bersifat fleksibel dan dapat diprogram sesuai kebutuhan.
Program 1
#include
void main()
{
while(1)
{
P1_1=0; //Motor Kanan aktif
P1_3=0; //Motor Kiri aktif
P1_0=P1_4;
P1_2=P1_5;
}
}
Pada sistem mikrokontroler pengguna dapat dengan mudah menambahkan fungsi-fungsi lain pada robot atau mengatur waktu tunda antara sensor dengan aktifitas motor.
Pada kondisi tidak mendeteksi garis, P1.0 dan P1.3 akan berlogika 1 sehingga kedua motor bergerak maju. Seperti yang telah dijelaskan sebelumnya bahwa kondisi keluaran Delta IR Line Sensing akan berubah menjadi logika 1 saat sensor mendeteksi obyek terang (di luar garis) dan berubah menjadi logika 0 saat sensor mendeteksi obyek gelap ( garis). Logika 0 pada sensor kiri akan mengubah kondisi logika P1.4 menjadi 0.
Sesuai pada bagian program bahwa P1.0 = P1.4 maka kondisi logika port inipun juga berubah menjadi 0. Motor kiri yang terhubung dengan port tersebut akan mengubah arah menjadi mundur dan motor kanan tetap maju dan robot akan bergerak ke kiri.
Delta IR Line Sensing memiliki 9 lubang spacer yang berfungsi untuk mengatur jarak sensor. Untuk gerakan dengan kecepatan yang lebih tinggi, sensor dapat dipasang lebih maju agar robot dapat mendeteksi lebih dini adanya perubahan terang gelap pada sensor dan mikrokontroler pada Delta Robo CPU segera mengambil aksi. Untuk aplikasi yang membutuhkan kecepatan tinggi ini mikrokontroler tidak harus langsung menggerakkan motor namun dibutuhkan waktu tunda yang harus disesuaikan dengan kecepatan motor terlebih dahulu sebelum melakukan belokan.
Evolusi Robot Indonesia
Sejauh ini, belum ada data yang dapat memberikan kepastian mengenai kapan robot, sebagai teknologi, mulai dikembangkan di Indonesia. Namun mulai tahun 80-an, kebijakan nasional dalam pengembangan riset teknologi telah memberikan dukungan pada litbang permesinan otomatis dalam rangka mencermati dan menunjang Sumber Daya Manusia Indonesia yang memiliki minat dan kemampuan untuk menguasai teknologi robot. Salah satu wujud konkretnya adalah dikembangkannya sejumlah laboratorium, seperti MEPPO (Mesin Perkakas Teknik Produksi dan Otomatis) yang diprakarsai oleh BPPT bekerjasama dengan ITB, Industri strategis, serta LET (Laboratorium Elektronika Terapan) di LIPI.
Sejak dikembangkannya sejumlah laboratorium tersebut, beraneka macam permesinan otomatis / robot telah berhasil dikembangkan, diproduksi, serta dikomersilkan oleh berbagai industri, baik industri strategis maupun industri lainnya di Indonesia. Bahkan dalam pengembangan robot terbaru saat ini, telah dikembangkan jenis robot yang memiliki kemampuan untuk mengontrol seluruh sistem operasi suatu pabrik.
Sejak tahun 80an, pendayagunaan dan pemanfaatan permesinan otomatis telah dilakukan terutama melalui sejumlah industri strategis, diantaranya: PT PINDAD (sistem, peralatan, dll.), PT LEN Industri (IT, perangkat lunak, komputasi), PT Bharata dan PTBBI (pengecoran presisi untuk membuat bagian-bagian mesin), dll. Disamping itu, PT DI dan PT PAL, yang merupakan pengguna mesin otomatis, telah menguasai pengetahuan mengenai operasionalisasi robot untuk teknologi pesawat terbang dan teknologi perkapalan.
Kontes Robot Indonesia pertama kali diselenggarakan oleh Depdiknas tahun 1990. Sebelas tahun berikutnya, tepatnya pada tahun 2001, salah satu perwakilan dari Indonesia, yaitu tim B-Cak dari PENS-ITS telah berhasil mencapai prestasi yang spektakuler, yakni dengan keluar sebagai Juara Pertama pada Asia Pasific Broadcasting (ABU) Robocon yang diselenggarakan di Tokyo.
Pada tahun 2001 juga, Kementerian Ristek bersama dengan Depdiknas telah mempromosikan juara Kontes Robot Indonesia dalam pameran Ristek tahunan yaitu RITECH EXPO (Research, Inovation, Technology Expo) yang diselenggarakan di Balai Sidang Jakarta. Dalam pameran tersebut terlihat respon positif dan antusiasme dari masyarakat.
Menjelang Kontes Robot Indonesia 2004, Kementerian Ristek bekerjasama dengan Departemen Pendidikan Nasional - Fakultas Teknik Universitas Indonesia telah menyelenggarakan semiloka (seminar dan lokakarya) dengan tema “Peluang dan Tantangan Teknologi Robot di Indonesia”. Semiloka ini diselenggarakan dengan tujuan mempertemukan pihak-pihak yang berkepentingan dalam rangka pengembangan teknologi robot, agar para stakeholders tersebut dapat saling berbagi informasi terbaru dan berbagi pemahaman mengenai isu-isu teknologi robot yang sedang berkembang saat itu. Sasaran yang ingin di capai dengan semiloka ini adalah terdifusinya teknologi robot ke kalangan masyarakat yang lebih luas. Yang menjadi sasaran dalam semiloka tersebut adalah difusi teknologi robot pada kalangan masyarakat yang lebih luas. Dengan diselenggarakannya seminar ini, diharapkan kalangan mahasiswa dapat memperoleh informasi mengenai kebijakan-kebijakan yang telah ditetapkan pemerintah serta kebutuhan industri dalam pemanfaatan dan pendayagunaan robot. Disisi lain, pihak industri bisa mendapatkan informasi dan gambaran mengenai pemanfaatan dan pendayagunaan robot untuk keperluan dan kepentingan industry, serta prospek dan kemampuan yang para mahasiswa dalam mengembangkan teknologi robot.
Ketika Mobil Robot LIPI (MOROLIPI) Beraksi
Salah satu langkah untuk mencegah terjadinya ledakan bom adalah menjinakkan bom tersebut sebelum meledak. Namun menjinakkan bom merupakan salah satu pekerjaan yang memiliki risiko tinggi, karena bom tersebut dapat meledak kapan saja. Untuk mengurangi risiko jatuhnya korban jiwa dalam upaya menjinakkan bom, diperlukan sebuah security robot yang dapat menggantikan tugas manusia.
Selama ini upaya ”penjinakan” bom di Indonesia lebih banyak mengandalkan keahlian manusia, meski dalam beberapa kasus, ancaman bom dapat dipatahkan dengan menggunakan detector maupun alat penjinak bom.
Selama kurang lebih sepuluh tahun terakhir ini beberapa lembaga riset nasional mulai mengembangkan sistem detektor dan robot penjinak bom. Diantaranya Badan Tenaga Nuklir Nasional (Batan), yang telah mengembangkan sistem analisis bahan eksplosif, bahkan narkoba dengan cara mengaktifkan neutron cepat menggunakan generator neutron.
Generator neutron telah dikembangkan di Pusat Teknologi Akselerator dan Proses Bahan Batan sejak tahun 1998. Pendeteksian bahan eksplosif dilakukan dengan cara memancarkan berkas neutron yang telah diaktivasi ke obyek, misalnya, kontainer yang berisi bahan eksplosif.
Dari spektrum sinar gamma yang timbul, dapat diketahui isi kontainer tersebut. Karena bahan peledak terdiri dari unsur H, C, N, dan O dalam komposisi tertentu, maka melalui spektrum sinar unsur-unsur tersebut dapat terbaca.
Penanganan bom dan/atau bahan peledak juga dapat dilakukan dengan menggunakan robot. Sebagaimana yang telah dikembangkan oleh Endra Pitowarno dari Politeknik Elektronika Negeri, Surabaya Institut Teknologi 10 Nopember, yang telah menghasilkan tiga generasi robot penjinak bom sejak 2003.
Belakangan, dikembangkan robot untuk menekan risiko tersebut. Sebenarnya penggunaan robot semacam itu oleh pasukan penjinak bahan peledak atau Tim Gegana Polri sudah dilakukan sejak lama. Sayangnya, robot-robot yang digunakan masih produk impor, antara lain berasal dari Israel dan Inggris.
Pemanfaatan security robot semacam itu yang paling menghebohkan akhir-akhir ini tentu saja terjadi ketika penggerebekan teroris di Dusun Beji, Kedu, Temanggung, Jawa Tengah. Robot penjinak bom tersebut berjalan perlahan melintasi halaman dan menyelinap ke dalam rumah target. Robot ini mampu mengambil gambar, video bahkan memindahkan benda. Dengan pergerakannya membopong kamera, robot ini memuluskan langkah polisi dalam membekuk orang yang bersembunyi dalam rumah di tengah ladang jagung yang berhawa dingin tersebut, yang diduga sebagai mastermind dari serangkaian tindakan terror yang terjadi di Indonesia selama satu dekade terakhir (termasuk terror bom yang terjadi di Hotel The Ritz-Carlton dan JW Marriott, kawasan Mega kuningan, Jakarta 17 Juli lalu).
Robot yang digunakan ketika itu didatangkan khusus dari Israel dengan harga yang cukup tinggi, harga per unitnya bisa mencapai 1 Milyar Rupiah. Namun demikian, sebenarnya Estiko Rijanto, seorang peneliti mekatronika dan sistem kontrol di Pusat Penelitian Tenaga Listrik dan Mekatronik, Lembaga Ilmu Pengetahuan Indonesia (LIPI), telah berhasil menemukan dan merakit robot penjinak bom, yang diperkenalkannya pada tahun 2006. Robot pengintai tersebut diberi nama Morolipi v1.0, mobil robot penjinak bom yang dikembangkan oleh LIPI (Lembaga Ilmu Pengetahuan Indonesia). Prototipe Morolipi yang telah dipatenkan itu desain awalnya dirancang pada tahun 2004 yang kemudian dilanjutkan hingga tahun 2008. Namun demikian, menurut Menteri Riset dan Teknologi saat itu, Kusmayanto Kadiman, robot tersebut mungkin belum bisa digunakan karena masih tahap pengembangan.
Morolipi adalah unit mobil robot berlengan penjepit yang memiliki kemampuan memotong putus kabel yang juga robotik. Dalam uji coba menjinakkan bahan peledak, Morolipi terbukti dapat bekerja efektif, yaitu memotong rangkaian kabel berukuran diameter 2 mm yang dapat memicu ledakan sehingga bahan peledak nonaktif.
[sunting] Spesifikasi Morolipi v1.0
Panjang 1 meter, lebar 1 meter, dan tinggi 90 cm.
Berat 80-100 kg.
Morolipi memiliki kemampuan berjalan di permukaan yang datar ataupun menaiki tangga dengan kecepatan 3 meter per detik tanpa menggunakan energi karena menggunakan kopling elektrik.
. Dengan sarana yang terpasang itu, operator dapat mengendalikan Morolipi dari jarak maksimal 6 kilometer dengan menggunakan tongkat pengendali (joystick).
Memiliki dua ruas lengan dengan panjang 70 cm dan dapat bergerak bebas ke lima arah, berputar 360 derajat, juga menekuk.
Terdapat gripper sebagai alat penjepit dan pemotong kabel di bagian ujung lengannya.
Morolipi dilengkapi dengan artikulator, kamera, dan sensor inframerah yang dapat mengirimkan citra hasil penginderaannya secara telemetri sehingga gambarnya dapat ditampilkan pada layar komputer yang dioperasikan oleh operator.
Dengan sarana yang terpasang itu, operator dapat mengendalikan Morolipi dari jarak maksimal 6km dengan menggunakan tongkat pengendali atau joystick.
Memiliki rangkaian elektronik penggerak mulai kontak dengan roda penggerak, lengan, kopling elektronika mekanisme melewati tangga, serta pengontrol supervisor untuk memudahkan pengoperasian.
Bahan bakar yang digunakan untuk menggerakkan Morolipi berupa aki listrik.
Memiliki 4 roda vespa delapan inci, plus sabuk roda untuk membantu menaiki tangga tanpa terpeleset.
Kontrol robot menggunakan software dari Visual Basic 6.0.
Desain pembutan software menggunakan VB.6.0.
Pembuatan source code kontrol menggunakan VB.6.0.
Selain Program dengan Visual Basic, Morolipi juga dilengkapi dengan program mikrokontroller yang menggunakan IC AT89X51 atau keluarga dari MCS51. Disini digunakan dua bahasa pemrograman, yaitu bahasa C digunakan untuk kontrol mikro utama dimana sinyal yang dilempar dari komputer melalui komunikasi serial akan diolah ulang oleh mikro pada robot untuk menjalankan perintah komputer tersebut.
Program yang telah dibuat lewat komputer di download kedalam Chip (IC AT89X51) dengan menggunakan Downloader DT-HiQ Programmer namun sebelumnya setiap program yang dibuat tersebut baik menggunakan bahasa Assembly ataupun bahasa pemrograman C keduanya harus dikompile agar menghasilkan bilangan HEX.
Rangkaian elektronik yang dihubungkan dengan komunikasi serial untuk mengirim perintah dari komputer dengan menggunakan kabel komunikasi serial. Pesan perintah ditulis dengan menggunakan kode-kode tertentu yang telah didefinisikan terlebih dahulu atau dikenal juga dengan istilah artificial intelligence (kecerdasan buatan), misalnya dengan mengetikkan kode EPZ 384, kemudian software robot akan menerjemahkan perintah tersebut secara otomatis.
Rangkaian elektronik menggunkan wireless yang dihubungkan dengan komputer agar dapat melempar sinyal ke robot.
Rangkaian elektronik dengan wireless yang dihubungkan dengan robot untuk menerima sinyal dari komputer
Prototype robot penjinak bom yang dikontrol secara manual. Sedang dikembangkan kontrol jarak jauh agar keamanan operator dapat terjaga, karena melihat dengan kontrol manual jarak yang bisa dijangkau tidaklah terlalu jauh sehingga dapat membahayakan operator. Jarak aman bagi operator untuk melihat ketika melakukan kontrol manual adalah sekitar 500 M.
Robot penjinak bom yang menggunakan kontrol manual.
Desain dengan dimensi yang lebih besar yang rencananya akan dikontrol dengan menggunakan software kontrol jarak jauh yang dilengkapi dengan kamera (CAM).
Robot penjinak bom dimensi besar yang sementara masih dalam pembuatan.
Dalam uji coba menjinakkan bahan peledak, Morolipi terbukti dapat bekerja efektif, yaitu memotong rangkaian kabel berukuran diameter 2 mm yang dapat memicu ledakan sehingga bahan peledak nonaktif.
[sunting] Morolipi V.2.
Setelah Morolipi v1.0, kini LIPI juga sedang mengembangkan versi kedua dari Morolipi, yaitu Morolipi V.2., yang akan dimunculkan pada acara HUT LIPI ke-23. Untuk versi kedua, menurut LIPI akan ditingkatkan kemampuannya untuk membawa senjata api untuk menembak sasaran, sistem pendeteksi bahan peledak, membantu pasukan anti huru-hara untuk mengatasi kerusuhan, dan bahkan melengkapi robot dengan kemampuan membersihkan tangki bahan bakar minyak di pelabuhan. Pada Morolipi versi ini robot kemampuan robot meningkat, yakni membawa senjata api. Robot generasi baru ini dapat dikendalikan untuk mendekati dan menembak sasaran. Selain itu, akan dilakukan pula pengembangan ke arah non-militer, yaitu robot akan dilengkapi dengan alat pembersih tangki bahan bakar minyak di pelabuhan.”Morolipi generasi kedua ini akan mengalami penyempurnaan dalam sistem penggerak rodanya sehingga memungkinkan berjalan lebih mulus dan cepat,” urai Estiko.
Pada tahap berikutnya, Morolipi akan dilengkapi dengan sistem detector bahan peledak. Hal ini dilakukan dengan cara merancang sistem mekatronika dan sensor. Dengan serangkaian pengembangan ini, Morolipi diharapkan dapat menjadi garda depan di kancah pertempuran, robot pengintai. Untuk menjaga ketertiban Morolipi juga dapat membantu pasukan antihuru-hara dalam mengatasi kerusuhan.
Namun, untuk mencapai tahap itu diperlukan waktu beberapa tahun lagi karena prototype Morolipi perlu difabrikasi oleh industri dan digunakan oleh berbagai pihak, antara lain Polri dan TNI serta industri manufaktur dan migas, tutur Estiko.
Pengembangan robot penjinak bom atau mobil robot, dapat mengurangi ketergantungan pada pihak luar negeri. Menurut Estiko, yang saat ini menjabat sebagai Kepala Bidang Mekatronik di kantornya yang berbasis di Bandung, Jawa Barat, jika hasilnya sesuai dengan yang diharapkannya nantinya, harga Moropoli hanya separuh dari produk sejenis buatan luar negeri yang hampir mencapai angka 1 Miliar Rupiah per unit. Morolipi diproyeksikan lebih unggul karena fleksibel untuk dilakukan revisi, lanjut Estiko .
Perkembangan teknologi robot memang memiliki peran yang sangat penting di bidang militer. Tidak hanya di darat, seperti yang kita lihat dalam peristiwa di Temanggung, pemanfaatan teknologi robot juga terjadi pada pesawat-pesawat nirawak yang berperan sebagai mata-mata, bahkan agen serbu yang siap mengorbankan dirinya menggantikan nyawa personel.
Jika sebelumnya robot hanya dioperasikan di laboratorium ataupun dimanfaatkan untuk kepentingan industri, di negara-negara maju perkembangan robot mengalami peningkatan yang tajam, saat ini robot telah digunakan sebagai alat untuk membantu pekerjaan manusia. Seiring dengan berkembangnya teknologi, khususnya teknologi elektronik, peran robot menjadi semakin penting tidak saja dibidang sains, tapi juga di berbagai bidang lainnya, seperti di bidang kedokteran, pertanian, bahkan militer. Secara sadar atau tidak, saat ini robot telah “masuk” dalam kehidupan manusia sehari-hari dalam berbagai bentuk dan jenis. Ada jenis robot sederhana yang dirancang untuk melakukan kegiatan yang sederhana, mudah dan berulang-ulang, ataupun robot yang diciptakan khusus untuk melakukan sesuatu yang rumit, sehingga dapat berperilaku sangat kompleks dan secara otomatis dapat mengontrol dirinya sendiri sampai batas tertentu
Robotika adalah salah satu wacana teknologi untuk menuju peradaban yang lebih maju. Kebanyakan orang selalu beranggapan bahwa robot adalah kemajuan teknologi yang mampu menggeser tingkah laku seseorang untuk melakukan suatu tindakan. Dengan kemajuan yang pesat, maka kebutuhan akan SDM akan merosot tajam. Layaknya revolusi pada bangsa Eropa.
Sangat disayangkan selali bila titik ikon kemajuan teknologi tersebut tidak seiring dengan cepat nya pemahaman masyarakat pada umumnya yang selalu meng-analogikan robot adalah biang kerok hilangnya tenaga buruh untuk memacu pertumbuhan perekonomian.
Hal ini layaknya dua sisi perbedaan yang tidak akan bisa menyatu sama lain. Tapi bisa dicermati kembali, bila orang pelukis ternama akan tergusur karena kemampuan sebuah robot pelukis yang bisa membuat lukisan yang sama. Sebuah robot yang mampu untuk memahat patung yang hampir mirip pula. Seluruh ilustrasi tersebut memang sepintas robot bisa menguasai semua, tapi sangat disayangkan hasil kerja robot adalah tak lebih dari sebuah alat cetak dan seonggok besi aluminium dan komponen elektronika yang dirakit pada papan PCB. Sebuah lukisan dari Afandi tentunya akan bernilai ratusan juta beda ukuran dengan lukisan robot yang paling-paing laku di jual 10 ribuan di pinggir jalan.
Robot Bukanlah Pemegang Kekuasaan
Istilah robot yang dahulu kala berjulukan Robota, tak lain adalah kata lain dari seorang buruh. Lain halnya dengan seorang manusia yang diciptakan se-sempurna mungkin oleh sang Pencipta. Sampai kapanpun robot adalah pembantu manusia. Bila sang teknokrat menciptakan robot untuk menjadi penguasa dunia, semoga saja dia tidak berumur panjang. Namun robot adalah sarana untuk membangun peradaban yang lebh maju dan memberikan kemudahan bagi manusia sebagai penciptanya. Dengan hasil demikian maka seluruh kajian tentang robotika menjadi lebih memasyarakat diseluruh elemen masyarakat. Dan buakan menjadi momok yang harus ditakuti.
Robotika sebagai Ikon dan Kajian Ke-ilmuan
Robot adalah simbol dari kamajuan dari sebuah teknologi, karena didalam nya mencakup seluruh elemen keilmuan. Elektronika, Mekanika, Mekatronika, Kinematika, Dimamika, dan lain sebagainya. Hal ini menjadi suatu alasan yang sangat tepat untuk mengash ilmu didalam nya. Ikon pendidikan akan menjadi semakin termasyur bila selalu mengutamakan teknologi didalam nya. Sebuah ikon ini sangat penting untuk membangun semangat kemajuan, karena hal ini akan menjadi sebuah patokan awal dari sebuah perjuangan untuk selalu dilanjutkan kepada generasi penerus.
read comments (0)
Dasar Pembuatan Robot
Author: hack_90
12 22nd, 2009
Secara garis besar, tahapan pembuatan robot dapat dilihat pada gambar berikut:
Ada tiga tahapan pembuatan robot, yaitu:
Perencanaan, meliputi: pemilihan hardware dan design.
Pembuatan, meliputi pembuatan mekanik, elektonik, dan program.
Uji coba.
1. TAHAP PERENCANAN
Dalam tahap ini, kita merencanakan apa yang akan kita buat, sederhananya, kita mau membuat robot yang seperti apa? berguna untuk apa? Hal yang perlu ditentukan dalam tahap ini:
Dimensi, yaitu panjang, lebar, tinggi, dan perkiraan berat dari robot. Robot KRI berukuran tinggi sektar 1m, sedangkan tinggi robot KRCI sekitar 25 cm.
Struktur material, apakah dari alumunium, besi, kayu, plastik, dan sebagainya.
Cara kerja robot, berisi bagian-bagian robot dan fungsi dari bagian-bagian itu. Misalnya lengan, konveyor, lift, power supply.
Sensor-sensor apa yang akan dipakai robot.
Mekanisme, bagaimana sistem mekanik agar robot dapat menyelesaikan tugas.
Metode pengontrolan, yaitu bagaimana robot dapat dikontrol dan digerakkan, mikroprosesor yanga digunakan, dan blok diagram sistem.
Strategi untuk memenangkan pertandingan, jika memang robot itu akan diikutkan lomba/kontes robot Indonesia/Internasional.
2. TAHAP PEMBUATAN
Ada tiga perkerjaan yang harus dilakukan dalam tahap ini, yaitu pembuatan mekanik, elektronik, dan programming. Masing-masing membutuhkan orang dengan spesialisasi yang berbeda-beda, yaitu:
Spesialis Mekanik, bidang ilmu yang cocok adalah teknik mesin dan teknik industri.
Spesialis Elektronika, bidang ilmu yang cocok adalah teknik elektro.
Spesialis Programming, bidang ilmu yang cocok adalah teknik informatika.
Jadi dalam sebuah tim robot, harus ada personil-personil yang memiliki kemampuan tertentu yang saling mengisi. Hal ini diperlukan dalam membentuk Tim Kontes Robot Indonesia (KRI) atau Kontes Robot Cerdas Indonesia (KRCI). Bidang ilmu yang saya sebutkan tadi, tidak harus diisi mahasiswa/alumni jurusan atau program studi tersebut, misalnya boleh saja mahasiswa jurusan teknik mesin belajar pemrograman.
Untuk mengikuti lomba KRI/KRCI dibutuhkan sebuah tim yang solid. Tetapi buat Anda yang tertarik membuat robot karena hobby atau ingin belajar, semua bisa dilakukan sendiri, karena Anda tidak terikat dengan waktu atau deadline. Jadi Anda bisa melakukannya dengan lebih santai.
Pembuatan mekanik
Setelah gambaran garis besar bentuk robot dirancang, maka rangka dapat mulai dibuat. Umumnya rangka robot KRI terbuat dari alumunium kotak atau alumunium siku. Satu ruas rangka terhubung satu sama lain dengan keling alumunium. Keling adalah semacam paku alumunium yang berguna untuk menempelkan lembaran logam dengan erat. Rangka robot KRCI lebih variatif, bisa terbuat dari plastik atau besi panjang seperti jeruji.
Pembuatan sistem elektronika
Bagian sistem elektronika dirancang sesuai dengan fungsi yang diinginkan. Misalnya untuk menggerakkan motor DC diperlukan h-brigde, sedangkan untuk menggerakkan relay diperlukan saklar transistor. Sensor-sensor yang akan digunakan dipelajari dan dipahami cara kerjanya, misalnya:
Sensor jarak, bisa menggunakan SRF04, GP2D12, atau merakit sendiri modul sensor ultrasonik atau inframerah.
Sensor arah, bisa menggunakan sensor kompas CMPS03 atau Dinsmore.
Sensor suhu, bisa menggunakan LM35 atau sensor yang lain.
Sensor nyala api/panas, bisa menggunakan UVTron atau Thermopile.
Sensor line follower / line detector, bisa menggunakan led & photo transistor.
Berikut ini gambar sensor ultrasonik, inframerah, UVTron, dan kompas:
Pembuatan sistem elektronika ini meliputi tiga tahap:
Design PCB, misalnya dengan program Altium DXP.
Pencetakan PCB, bisa dengan Proboard.
Perakitan dan pengujian rangkaian elektronika.
Pembuatan Software/Program
Pembuatan software dilakukan setelah alat siap untuk diuji. Software ini ditanamkan (didownload) pada mikrokontroler sehingga robot dapat berfungsi sesuai dengan yang diharapkan.
Tahap pembuatan program ini meliputi:
Perancangan Algoritma atau alur program
Untuk fungsi yang sederhana, algoritma dapat dibuat langsung pada saat menulis program. Untuk fungsi yang kompleks, algoritma dibuat dengan menggunakan flow chart.
Penulisan Program
Penulisan program dalam Bahasa C, Assembly, Basic, atau Bahasa yang paling dikuasai.
Compile dan download, yaitu mentransfer program yang kita tulis kepada robot.
3. UJI COBA
Setelah kita mendownload program ke mikrokontroler (otak robot) berarti kita siap melakukan tahapan terakhir dalam membuat robot, yaitu uji coba. Untuk KRCI, ujicoba dilakukan pada arena seluas sekitar 4×4 meter dan berbentuk seperti puzzle. Dalam arena KRCI ini diletakkan lilin-lilin yang harus dipadamkan oleh robot cerdas pemadam api. Contoh gambar robot pemadam api Ted Larsorn dan arena Kontes Robot Cerdas Indonesia (KRCI).
Untuk lomba robot KRI, dibutuhkan ruangan yang lebih besar, yaitu sekitar 15×15 meter.
Karya : Teguh Junianto
read comments (0)
RoboT ManusiA
Author: riyan_05
12 21st, 2009
Robotika adalah salah satu wacana teknologi untuk menuju peradaban yang lebih maju. Kebanyakan orang selalu beranggapan bahwa robot adalah kemajuan teknologi yang mampu menggeser tingkah laku seseorang untuk melakukan suatu tindakan. Dengan kemajuan yang pesat, maka kebutuhan akan SDM akan merosot tajam. Layaknya revolusi pada bangsa Eropa.
Sangat disayangkan sekali bila titik ikon kemajuan teknologi tersebut tidak seiring dengan cepat nya pemahaman masyarakat pada umumnya yang selalu meng-analogikan robot adalah biang kerok hilangnya tenaga buruh untuk memacu pertumbuhan perekonomian.
Hal ini layaknya dua sisi perbedaan yang tidak akan bisa menyatu sama lain. Tapi bisa dicermati kembali, bila orang pelukis ternama akan tergusur karena kemampuan sebuah robot pelukis yang bisa membuat lukisan yang sama. Sebuah robot yang mampu untuk memahat patung yang hampir mirip pula. Seluruh ilustrasi tersebut memang sepintas robot bisa menguasai semua, tapi sangat disayangkan hasil kerja robot adalah tak lebih dari sebuah alat cetak dan seonggok besi aluminium dan komponen elektronika yang dirakit pada papan PCB. Sebuah lukisan dari Afandi tentunya akan bernilai ratusan juta beda ukuran dengan lukisan robot yang paling-paing laku di jual 10 ribuan di pinggir jalan.
Robot Bukanlah Pemegang Kekuasaan
Istilah robot yang dahulu kala berjulukan Robota, tak lain adalah kata lain dari seorang buruh. Lain halnya dengan seorang manusia yang diciptakan se-sempurna mungkin oleh sang Pencipta. Sampai kapanpun robot adalah pembantu manusia. Bila sang teknokrat menciptakan robot untuk menjadi penguasa dunia, semoga saja dia tidak berumur panjang. Namun robot adalah sarana untuk membangun peradaban yang lebh maju dan memberikan kemudahan bagi manusia sebagai penciptanya. Dengan hasil demikian maka seluruh kajian tentang robotika menjadi lebih memasyarakat diseluruh elemen masyarakat. Dan buakan menjadi momok yang harus ditakuti.
Robotika sebagai Ikon dan Kajian Ke-ilmuan
Robot adalah simbol dari kamajuan dari sebuah teknologi, karena didalam nya mencakup seluruh elemen keilmuan. Elektronika, Mekanika, Mekatronika, Kinematika, Dimamika, dan lain sebagainya. Hal ini menjadi suatu alasan yang sangat tepat untuk mengash ilmu didalam nya. Ikon pendidikan akan menjadi semakin termasyur bila selalu mengutamakan teknologi didalam nya. Sebuah ikon ini sangat penting untuk membangun semangat kemajuan, karena hal ini akan menjadi sebuah patokan awal dari sebuah perjuangan untuk selalu dilanjutkan kepada generasi penerus.
Jika dulu robot identik dengan mesin berbentuk kaku, tidak demikian dengan saat ini. Para pengembang robot mulai menciptakan robot yang memiliki bentuk menyerupai manusia (humanoid).
Tak hanya wujudnya yang menyerupai manusia, robot-robot ini juga melakukan berbagai aktivitas yang lazim dilakukan manusia. Simak daftar 6 robot humanoid yang memiliki fungsi unik berikut ini:
6 Robot ‘Mirip Manusia’ Terunik
1. Simroid
Robot ini menyerupai wanita muda yang menarik, berambut panjang serta mempunyai tinggi 160 cm. Robot besutan Jepang ini sengaja dirancang untuk latihan praktik di sekolah kedokteran gigi. Simroid dapat menunjukkan ekspresi tidak nyaman dengan mengerutkan dahi.
Simroid juga mampu bilang ‘itu sakit’ dan berteriak ‘ouw’ ketika bor sang dokter gigi mengenai sarafnya. Kehadiran robot ini membantu calon dokter gigi untuk belajar memahami perasaan pasien dan berusaha untuk meningkatkan keahliannya serta memperlakukan pasien secara manusiawi.
2. Robot ‘Flu Babi’
Untuk urusan robot, Jepang memang tak ada matinya. Kali ini ahli robot di Negeri Sakura ‘melahirkan’ robot ‘flu babi’. Robot ini dirancang untuk membantu petugas kesehatan mendiagnosa gejala-gejala orang yang terkena flu babi dan cara perawatannya.
Robot ini akan menunjukkan gejala-gejala seperti panas berkeringat, merintih, menangis dan kejang. Jika tidak segera dirawat, gejalanya semakin parah dan kemudian si robot berhenti bernafas alias meninggal. Ini untuk menunjukkan betapa bahayanya jika penderita flu babi tidak ditangani secara baik.
3. Ibn Sina
Eksis di situs jejaring sosial bukan lagi monopoli manusia. Robot bernama Ibn Sina ini pun tak ingin ketinggalan. Robot yang dikembangkan para ahli dari Interactive Robots and Media Lab (IRML) University of the United Arab Emirates bersama ahli dari Jerman dan Yunani ini memiliki kemampuan untuk melakukan percakapan secara real-time dengan orang-orang yang mengajaknya chatting lewat Facebook ataupun IRML dengan modul bahasa yang dimilikinya.
Robot pria berjenggot ini juga mampu menjadi asisten belanja di mall ataupun resepsionis. Ibn Sina dijejali modul software sehingga mampu melihat, mendeteksi wajah, memahami percakapan, serta merespon semuanya itu.
4. Aiko
Robot bernama Aiko ini tak hanya cantik parasnya, tapi juga pintar. Aiko sengaja diciptakan oleh seorang ilmuwan di Kanada bernama Le Trung untuk dijadikan sebagai pendamping hidup. Robot ini memiliki kemampuan berbahasa Inggris dan Jepang serta mampu memecahkan soal-soal matematika. Trung mengklaim bahwa Aiko bisa memahami dan mengatakan 13.000 kalimat dalam bahasa Inggris dan Jepang. Aiko terus disempurnakan agar siap menjadi pendamping yang sempurna untuknya.
5. Saya
Lagi-lagi Jepang menelurkan sebuah robot humanoid jempolan. Kali ini yang unjuk gigi adalah robot wanita bernama Saya. Si Saya didaulat untuk mengerjakan tugas-tugas yang biasa dilakukan sekretaris. Selain menjadi sekretaris, Saya juga bisa menjadi guru dan juga resepsionis, dengan didukung kemampuan multibahasa dan juga berbagai ekspresi wajah. Saat ini, Saya yang dibalut busana berkerah warna kuning menjalankan tugasnya sebagai resepsionis di Tokyo University.
6. HRP-4C
Satu lagi robot humanoid Jepang yang mengundang decak kagum, yakni HRP-4C. Robot cantik ini memulai debutnya sebagai model yang berlenggak-lenggok di catwalk. Robot ini terinspirasi dari karakter di komik manga. Setelah menapaki karir di dunia fashion, robot dengan tinggi 158 cm ini pun kembali mencuat dengan menjadi model baju pernikahan.
Robot ini berdandan cantik layaknya mempelai wanita dalam perhelatan bertajuk 2009 Yumi Katsura Paris Grand Collection di Osaka, Jepang. Gerak tubuhnya pun luwes, lemah gemulai bak seorang model manusia. Robot ini diharapkan dapat terus eksis di dunia fashion dan hiburan. detik.
read comments (0)
Kelompok Robot Mini Tirukan Semut
Author: FATCHUR RIZQI ARISANDI
12 21st, 2009
Jakarta - Robot buatan manusia tidak melulu berukuran besar atau raksasa layaknya di film Transformers. Beberapa ilmuwan juga kian giat membuat robot-robot mungil yang baik ukuran dan tingkahnya hampir sama dengan semut.
Microbot seperti ini nantinya difungsikan untuk mengoleksi data dalam berbagai tujuan seperti misi mata-mata atau medis. Berbagai institut teknologi di Swedia, Spanyol, Jerman, Italia dan Swiss bahkan dikabarkan ramai-ramai membuat robot kerdil itu.
Dikutip detikINET dari FoxNews, Kamis (3/9/2009), robot yang berukuran sekitar 4 mm ini memakai tenaga matahari sebagai sumber daya. Tiga kakinya digunakan untuk bergerak sedangkan satu sebagai sensor sentuh.
Jika bekerja sendirian, robot tersebut tidak bisa berbuat banyak. Namun berbasis konsep I-SWARM (intelligent small-world autonomous robots for micro-manipulation), sekumpulan robot bakal bekerja sama layaknya kelompok serangga.
Menurut konsep tersebut, sejumlah besar robot akan berinteraksi dengan lingkungan dan berkomunikasi satu sama lain melalu infra merah kala menjalankan tugas tertentu. Ini mirip-mirip dengan cara kerja kawanan semut.
Robot Tangan yang Fleksibel
Author: rafqi_ahmad
12 21st, 2009
Dalam kehidupan masyarakat modern, istilah robot sudah terasa begitu akrab. Meskipun kehadirannya mungkin masih jarang dijumpai di banyak tempat. Tapi setidaknya akan segera paham jika disebutkan tentang robot. Sementara, bagi kebanyakan orang, robot seringkali diartikan sebagai mesin berbentuk manusia yang bisa melakukan gerakan atau tindakan seperti manusia. Ini merupakan imej yang ditimbulkan oleh kebanyakan film bergenre science fiction.
Lalu definisi robot itu sendiri bagaimana? manurut situs inventors.about.com adalah merupakan perangkat otomatis yang menyelenggarakan fungsi yang biasanya di anggap berasal dari manusia atau sebuah mesin yang berbentuk manusia. Mungkin sebuah definisi yang kurang tepat karena ada beberapa robot yang tidak berbentuk menyerupai manusia atau bagian daro organ manusia maupun menggantikan pekerjaan-pekerjaan yang semula dilakukan oleh manusia meskipun sebagian besar tujuan pencipyaan robot adalah untuk itu. Karena kenyatannya robot-robot yang telah berhasil dibuat dan kemudian menjadi terkenal. Justru bukan robot menyerupai bentuk tubuh atau bagian organ manusia. Misalnya robot anjing AIBO ERS-210 yang dibuat perusahaan SONY.
Robot Tangan yang Fleksibel
Sebuah robot berbentuk tangan diciptakan oleh para mahasiswa dari Virginia Tech’s Robotics and Mechanisms Laboratory, Amerika Serikat. Robot tangan tersebut mampu mengangkat kaleng berat berisi makanan dengan gerakan yang fleksibel, tidak kaku seperti robot pada umumnya.
Robot bernama RAPHaEL (Robotic Air-Powered Hand with Elastic Ligaments) itu dibuat dengan mesin berkekuatan udara. Robot dihubungkan dengan tabung berisi udara dan dikendalikan operator untuk membuat tekanan pada jari-jari robot.
Yang membuat RAPHaEL unik adalah jari-jarinya tidak dikontrol satu persatu, jadi hanya membutuhkan satu penggerak dan jari-jari lainnya juga akan bergerak.
Penemuan ini sangat menarik, karena jari-jari robot terlihat bergerak seperti jari manusia dan tidak kaku, Robot tangan ini juga memenangkan juara pertama dalam Compressed Air and Gas Institute Innovation Awards Contest di Amerika Serikat pada 2008/2009.
Karya :
Rafqi Ahmad
read comments (0)
Robot di Masa Depan
Author: Riyanto Wibowo
12 20th, 2009
Pasti kamu pernah bertanya-tanya seperti apakah robot di masa depan. Dan kita juga sering menghayal, misalnya seandainya saja ada robot yang bisa mengemudikan kendaraan ketika kita ingin berpergian atau seandainya saja ada robot yang bisa menggantikan posisi kita saat mengerjakan kegiatan sehari-hari.
Ternyata sekarang hayalan itu telah menjadi kenyataan. Jika kita menginginkan robot pengemudi mobil, saat ini para peneliti di Massachusetts Institute of Technology (MIT) sedang menciptakan sebuah in-car personal robot yang diberi nama Affective Intelligent Driving Agent (AIDA). Robot ini didesain untuk menawarkan semacam fungsi sebagai co-driver yang bersahabat. Beragam teknologi dalam jumlah besar akan digunakan untuk mengendalikan kendaraan hingga pada akhirnya mengarah pada teknologi kendaraan yang dapat mengemudi sendiri.
Affective Intelligent Driving Agent (AIDA)
Pernahkan kamu menonton film Surrogates? Film ini menceritakan masa depan dimana semua kegiatan manusia digantikan oleh robot kloningan manusia tersebut. Dan ternyata, sebuah perusahaan di Tokyo yang bernama Kokoro telah mampu membuat robot kloningan yang sangat mirip dengan manusia. Robot kloningan tersebut akan dibuat semirip mungkin dengan si pemesan, baik dari segi wajah, rambut, mata, dan tubuh. Yang mungkin akan membuat si pemesan semakin tercengang adalah karena si robot kembarannya tersebut juga bakal memiliki suara, ekspresi wajah, dan gerak gerik tubuh bagian atas yang mirip dengan dirinya. Mungkin robot kloningan ini merupakan asal mula dari robot kloningan yang ada di film Surrogates.
Robot Kloningan
Revolusi perkembangan teknologi robot memang sungguh cepat saat ini, bahkan banyak proyek pengembangan teknologi sudah dipersiapkan untuk banyak kebutuhan manusia di masa depan. Bisa jadi banyak aspek dan keseharian kita di masa depan tidak terlepas dari teknologi robot dan sistem otomatisasi kerja yang sangat canggih disegala bidang.
Robot tak cuma pintar menjalankan perintah saja, seperti yang sekarang banyak dipekerjakan di industri mobil dan elektronik. Robot di masa depan diramalkan lebih mandiri, mampu membuat analisa dan menambil keputusan. Di bawah ini merupakan robot-robot yang diramalkan akan menemani kita di masa depan.
Robot mainan anjing ini dibuat memiliki perilaku sama dengan aslinya
Bahkan dalam aspek rumah tanggapun sangat dimungkinkan sistem otomatisasi robot akan banyak membantu pekerjaan dan kegiatan manusia seperti baby sitter.
Anakpun bisa diasuh oleh baby sitter robot
Pelayan dan koki yang masak pun bisa digantikan robot
wah Kenny G atau Dave Coz bisa pensiun gini caranya
Namun relakah pekerjaan atau profesi kita suatu hari nanti akan digantikan oleh robot-robot ini? Mungkin bagi seorang bos akan memilih robot-robot ini dibandingkan dengan kita, karena robot-robot ini lebih mudah diperintah dan tidak pernah membangkang. Mau tidak mau, kita harus siap berkompetisi dengan robot-robot ini dalam bekerja dan menjalani profesi kita. Namun bagaimanapun juga manusia memiliki banyak keunggulan yang masih susah untuk digantikan oleh robot sepintar apapun, yaitu perasaan, nalar dan emosi termasuk didalamnya cinta kasih.
Sumber : Detikinet.com, Rileks.com, Ruanghati.com
karya :
Riyanto Wibowo
read comments (0)
Pengendalian Lengan Robot Berbasis Mikrokontroler AT89C51 Menggunakan Transduser Ultrasonik
Author: Widya Agsari
12 20th, 2009
Perkembangan teknologi robotika telah membuat kualitas kehidupan manusia
semakin tinggi. Saat ini perkembangan teknologi robotika telah mampu
meningkatkan kualitas maupun kuantitas produksi berbagai pabrik. Teknologi
robotika juga telah menjangkau sisi hiburan dan pendidikan bagi manusia.
Salah satu cara menambah tingkat kecerdasan sebuah robot adalah dengan
menambah sensor pada robot tersebut. Makalah ini memaparkan salah satu sudut
teknologi robotika yaitu teknologi robot yang memiliki kemampuan menghindari
halangan (
obstacle avoidance robot
). Kemampuan menghindari halangan dapat
diberikan pada sebuah robot dengan berbagai cara seperti menggunakan kamera atau
menggunakan detektor halangan.
Penggunaan kamera sebagai sensor akan meningkatkan kemampuan robot
untuk menentukan posisi sebuah obyek (Nurbiyanto, 2001). Namun penggunaan
kamera dengan sistem pengolahan citra secara digital akan menambah beban
komputasi bagi mikrokontroler sehingga kemampuan robot mengalami penurunan
pada sisi yang lain seperti pada kecepatan proses.
Artikel ini memaparkan penggunaan tranduser ultrasonik sebagai detektor
halangan dalam pengendalian sebuah lengan robot. Penggunaan transduser ultrasonik
sebagai pengukur jarak halangan dapat dilakukan dengan dua metode. Metoda yang
pertama adalah dengan mengukur selang waktu pengiriman dan penerimaan gema
ultrasonik. Metoda kedua adalah dengan mengukur kekuatan sinyal pantulan.
Pengukuran jarak dengan metoda mengukur selang waktu penerimaan gema
ultrasonik akan menghasilkan pengukuran yang cukup presisi (Firmansyah, 2000).
Namun penggunaan metoda ini menuntut pengguna untuk mengatur nilai ambang
yang menentukan batas minimal kekuatan gema ultrasonik ketika halangan telah
terdeteksi melalui sebuah potensiometer yang nilainya sering bergeser akibat
bertambahnya umur sensor. Pengukuran dengan metoda ini juga menuntut
mikrokontroler untuk melakukan proses menunggu datangnya gelombang pantulan.
Waktu menunggu ini akan cukup mengganggu bagi mikrokontroler yang diberi
beban tugas yang cukup kompleks seperti mengendalikan gerakan robot.
Metoda penentuan jarak halangan melalui pengukuran tingkat kekuatan
gelombang pantulan memberikan beberapa keuntungan. Pada metode ini
mikrokontroler tidak perlu melakukan proses menunggu gelombang pantulan tetapi
cukup menunggu proses konversi data kekuatan sinyal dari analog ke digital.
Pengguna juga tidak perlu mengeset potensiometer secara manual. Kelemahan
metode ini adalah data hasil pengukuran yang didapatkan kurang presisi.
Perancangan Sistem
Sistem yang dirancang menggunakan lengan robot ROB3 sebagai basisnya.
Lengan robot ROB3 digerakkan oleh enam buah motor DC. Posisi sudut setiap poros
diketahui melalui potensiometer. Sebagai penggerak motor dirancang rangkaian
driver yang tersusun atas IC L293D serta driver yang tersusun atas transistor
darlington TIP 120 dan TIP 125.Untuk membangkitkan frekuensi ultrasonik
digunakan rangkaian multivibrator dari IC 555. Gelombang pantulan yang diterima
oleh transduser penerima mengalami proses penyesuaian isyarat melalui untai
penguat, penyearah serta filter. Keluaran untai penyesuai isyarat serta keluaran
potensiometer diubah menjadi digital oleh IC ADC0809. Mikrokontroler
menggunakan data-data tersebut untuk menentukan bentuk gerakan serta kecepatan
gerakan yang dilakukan oleh robot. Setiap motor digerakkan oleh isyarat
Pulse Width
Modulation
yang dihasilkan Mikrokontroler. Gambar 1 menunjukkan skema lengan
robot ROB3. Gambar 2 menunjukkan diagram kotak sistem pengendalinya.
Pemancar Gelombang Ultrasonik
Pemancar gelombang ultrasonik disusun oleh sebuah transduser ultrasonik
yang diberi gelombang kotak dengan frekuensi sekitar 40 KHz. Gelombang kotak
dihasilkan oleh untai multivibrator yang disusun oleh IC 555 yang bekerja secara
astable. Rangkaian pemancar ultrasonik ditunjukkan gambar 3.
Penerima Gelombang Ultrasonik
Metode pengukuran jarak halangan yang digunakan adalah dengan mengukur
kekuatan sinyal pantulan. Gelombang pantulan ditangkap dengan sebuah transduser
penerima. Transduser penerima mengeluarkan isyarat sinus yang amplitudonya
tergantung dari jarak halangan dengan transduser. Untai penerima Gelombang
ultrasonik berfungsi memperkuat, menyearahkan serta menapis keluaran transduser
penerima sebelum dikirim ke ADC. Penyearahan isyarat dilakukan oleh untai
penyearah presisi yang dibantu dengan dua buah untai buffer serta sebuah penguat
subtractor untuk memperoleh penyearahan gelombang penuh. Untai penyesuai
isyarat akan memberikan penguatan total sekitar 150 kali dan jarak halangan terjauh
yang masih terdeteksi adalah sekitar 100 cm. Gambar 4 menunjukkan blok diagram
penyesuai isyarat.
Penguat inverting bertugas sebagai penguat pertama dengan nilai penguatan
sekitar 46 kali. Untai penyearah presisi yang dirancang memiliki penguatan sekitar 2
kali. Untai pengurang mempunyai penguatan 1,5 kali. Untai filter pelewat rendah
orde dua dirancang memiliki nilai frekuensi
cut-off
sekitar 60 Hz untuk
menyesuaikan dengan kebutuhan. Keluaran untai penyesuai isyarat adalah isyarat
DC yang siap diubah menjadi digital. Gambar 5 sampai dengan 9 masing-masing
menunjukkan untai penguat
inverting
, penyearah presisi, buffer, penguat
subtractor
serta filter yang digunakan dalam penelitian ini.
Untai ADC
Untai ADC digunakan untuk mengubah keluaran potensiometer menjadi data
digital serta untuk mengubah keluaran penyesuai isyarat tranduser ultrasonik menjadi
data digital. IC ADC0809 memiliki delapan kanal input analog. Enam kanal input
ADC0809 digunakan untuk potensiometer dan satu kanal input digunakan untuk
keluaran tranduser ultrasonik. Proses pengaksesan kanal ADC dilakukan satu persatu
secara bergantian sesuai kebutuhan. Pengendalian ADC oleh mikrokontroler
dilakukan melalui sinyal READ, WRITE serta CS.
Sistem Minimal AT89C51
Mikrokontroler AT89C51 mempunyai tugas mengendalkan seluruh sistem.
Mikrokontroler juga bertugas menerima program dalam format heksadesimal dari
komputer dan menyimpannya di RAM eksternal. Sistem minimal mikrokontroler
dilengkapi dengan PPI 8255 untuk menambah port keluaran. Mikrokontroler
membangkitkan sinyal PWM untuk menggerakkan motor serta sinyal-sinyal
pengendali ADC dan driver motor. Mikrokontroler menerima data digital dari
ADC0809 yang berasal dari sensor potensiometer dan transduser ultrasonik.
Driver Motor IC L293D
Sebuah IC L293D berisi empat buah push-pull. Setiap dua buah push-pull
dapat digunakan sebagai sebuah untai H-bridge dan dapat diaktifkan dengan sebuah
sinyal enable. Dalam penelitian ini digunakan metode DC Chopper kelas E sehingga
untai yang dirancang ditunjukkan gambar 10. IC L293D mampu beroperasi pada
tegangan 4,5 V sampai 36 V. Besarnya arus yang dapat ditarik adalah 600mA pada
kondisi normal serta 1,2 A pada arus puncak (sesaat).
Driver Motor Transistor TIP 120 dan TIP 125
IC L293D hanya mampu menyediakan arus sekitar 600 mA secara kontinyu
sehingga untuk motor yang menarik arus diatas nilai tersebut dirancang untai H-
bridge dengan transistor darlington sebagai basisnya. Gambar 11 menunjukkan
rancangan driver motor dengan transistor TIP 120 dan TIP 125. Untai ini dapat
menyediakan arus sampai sekitar 5 A. Frekuensi kerjanya di bawah 300 Hz.
INTISARI
Kemampuan menghindari halangan diperlukan oleh sebuah robot yang
bekerja pada lintasan yang sering terganggu.
Lengan robot dapat dilengkapi dengan tranduser ultrasonik sebagai detektor
halangan. Jarak halangan dapat diketahui dengan mengukur kekuatan gelombang
ultrasonik yang dipantulkan oleh halangan. Hasil pengukuran jarak halangan
digunakan oleh mikrokontroler untuk menentukan arah serta kecepatan gerakan yang
dikerjakan oleh robot. Kecepatan gerakan robot dikendalikan oleh mikrokontroler
dengan cara mengeluarkan isyarat PWM yang sesuai.
Hasil pengamatan menunjukkan bahwa transduser ultrasonik dapat
mendeteksi halangan yang berbentuk silinder pada lintasan robot yang berbentuk
setengah lingkaran dengan jari-jari sekitar 25 cm. Halangan di sisi luar lintasan dapat
dikenali oleh sensor sejak awal sedangkan halangan di sisi dalam lintasan terdeteksi
setelah jarak sensor dengan halangan 10 cm. Daerah kerja robot yang diperbolehkan
mendapat sebuah halangan adalah sekitar 75% dari daerah kerja seluruhnya.
mendapat sebuah halangan adalah sekitar 75% dari daerah kerja seluruhnya
Karya :
Widya Agsari
read comments (0)
Robot Bawah Air Lebih Efisien
Author: Feby Nur Fattah
12 20th, 2009
Banyak robot yang telah diciptakan oleh ilmuwan seiring perkembangan teknologi yang semakin pesat. Mulai dari yang sederhana sampai yang paling rumit. Mulai dari yang multifungsi sampai yang hanya bisa menjalankan satu eksekusi. Wilayah kerjanya pun mencakup darat, laut dan udara. Namun, perkembangan teknologi dalam air kurang mendapat perhatian dari masyarakat. Masih banyak kegiatan bawah air yang dilakukan sendiri oleh manusia tanpa bantuan robot, seperti pengamatan bawah laut. Pengamatan bawah laut yang dilakukan manusia memiliki beberapa resiko yaitu adanya area-area yang sulit dijangkau manusia serta resiko bahaya yang tinggi akibat serangan hewan buas. Oleh karena itu, robot yang mampu bergerak bebas di dalam air sangat dibutuhkan untuk membantu tugas manusia.
Secara umum, berdasarkan sistem pengendaliannya robot bawah air dibagi menjadi menjadi dua jenis yaitu Autonomous Underwater Vehicles (AUV) dan Remoted Operated Vehicles (ROV). AUV adalah kendaraan bawah air yang mampu bergerak di dalam air secara otomatis tanpa adanya kontrol langsung dari manusia. Sedangkan ROV adalah kendaraan bawah air yang gerakannya dikendalikan secara langsung oleh manusia melalui remote kontrol dari atas permukaan air. Robot penyelam termasuk dalam jenis robot atau kendaraan bawah air yang tergolong ROV.
Robot penyelam adalah robot yang mampu bergerak di dalam air. Gerakan yang dapat dilakukan adalah naik dan turun/menyelam. Gerakan ke atas timbul akibat adanya gaya dorong dari putaran propeller, sedangkan untuk gerak menyelam disebabkan oleh berat beban dari robot (saat kondisi motor off). Robot ini dikontrol dengan menggunakan remote kontrol 4 kanal yang menggunakan RF. Robot dijalankan untuk 5 keadaan yaitu start, naik, turun, kembali ke posisi semula, dan menghentikan robot. Perencanaan sistem meliputi perencanaan driver, mekanik, dan software. Sebagai penggerak propeller-nya, robot ini menggunakan motor DC 9 volt. Robot ini menggunakan mikrokontroler AT89C2051. Perencanaan mekanik dari robot meliputi perangkaian gear box, shielding poros propeller, dan perancangan beban. Shielding poros propeller menggunakan karet oring. Beban yang digunakan dipasang di sekeliling robot agar lebih seimbang. Robot ini diuji di dalam akuarium dengan kedalaman sekitar 70 cm. Saat pengujian diperoleh kecepatan gerak naik rata - rata 16,29 cm/detik dengan massa total robot sebesar 1510 gram, dan volume robot 1225 cm³. Karena dasar badan robot berbentuk datar, maka jarak minimal propeller 1,8 cm.
Salah satu contoh pemanfaatan robot bawah air, khususnya robot ROV, adalah seperti yang digunakan oleh PT. Ratu Prabu Energy Tbk (ARTI). ROV tipe Vector M5 merupakan robot portable yang beroperasi di bawah air untuk melaksanakan pekerjaan eksploitasi, inspeksi, perbaikan serta perawatan. Dengan daya selam 1.000 meter alat ini dikhususkan bagi proyek minyak dan gas bumi lepas pantai.
Menurut Daniel Yudi, Marine Departement Manager ARTI, dibanding penyelam manusia, robot ini dapat mempersingkat waktu kerja dan mengurangi risiko kecelakaan khususnya dalam menghadapi kondisi laut yang tidak menentu. “Dengan menggunakan robot ini, biaya operasional bisa dipangkas hingga 50%,” ujarnya.
Rumah Masa Depan - Penggabungan Pengenal Suara dan Robot
Author: Thomas Kurniawan
12 19th, 2009
Pengenal Suara (Voice Recognition) adalah sebuah aplikasi atau program yang dapat mengkonversikan suara(melalui sensor suara) menjadi sebuah text. Sedangkan robot, adalah suatu perangkat mekanik untuk melaksanakan suatu pekerjaan yang biasanya dikerjakan oleh manusia. Misalnya melakukan pengecatan mobil. Robot ini dilengkapi oleh perangkat mesin atau komputer baik sederhana maupun komplek yang mampu mengontrol gerakannya, dijalankan menggunakan command text. Dari sini dapat disimpulkan bahwa dari suara dapat dikonversi menjadi text command yang kemudian digunakan untuk menjalankan sebuah robot.
Sebelumnya pengaplikasian voice recognition sudah digunakan di dalam dunia otomotif. Sebagai contoh, di dalam film 2012 yang baru-baru ini keluar di bioskop Indonesia, ada sebuah mobil (Bentley, lupa tipenya) yang dapat menyala (melakukan electronic starter) hanya dengan mengatakan “Engine Start!”). Betapa mudahnya bukan? Tanpa perlu memutar kunci, cukup dengan memerintah mobil untuk menyalakan mesin.
Dari teori dan contoh tersebut di atas, muncul ide di dalam benak penulis untuk membuat sebuah rumah, yang dikombinasikan dengan voice recognition dan pengaplikasian gerakan dari robot sederhana (hidrolik). Secara logika dapat dibayangkan apabila kita tidak perlu repot membuka pintu rumah saat sedang membawa banyak barang belanjaan, cukup dengan mengatakan “Buka Pintu!”, maka pintu akam terbuka untuk anda secara otomatis. Contoh lain, kita dapat menyalakan lampu cukup dengan mengatakan “Nyalakan Lampu!”, maka lampu akan menyala secara otomatis. Bayangkan bagaimana mudahnya tinggal di dalam rumah yang semuanya dapat dilakukan hanya dengan perinatah suara.
Secara sistem, diperlukan beberapa alat, antara lalin:
1. Voice Input/Voice Receiver
Alat ini digunakan untuk menangkap suara. Dari sini kemudian suara diproses menggunakan sebuah converter suara menjadi text
2. Voice to Text Converter
Voice to text Converter adalah alat yang digunakan untuk mengubah bentuk data yang diterima oleh voice receiver diubah bentuknya menjadi data text. Data hasil konversi tadi kemudian akan diteruskan menjadi sebuah command untuk menggerakan robot yang berupa lengan hidrolik. Alat ini biasanya berbentuk chip kecil(microproccessor).
3. Lengan Hidrolik (Hidrolic arm)
Hidrolik ini yang nantinya akan menggerakkan pintu untuk membuka dan menutup secara otomatis.
Cara kerjanya adalah sebagai berikut:
Sistematika di atas sangat sederhana, karena hanya menggunakan lengan hidrolik. Namun bisa diterapkan untuk membuka jendela, lemari, laci, dan lain-lain. Penerapan yang sama untuk menyalakan lampu, hanya saja alat yang digunakan sedikit berbeda, yakni dapat digunakan switch atau alat lain yang dapat menyambung-putuskan aliran listrik. Dapat juga dikembangkan lagi menjadi lebih canggih, misalnya menyalakan kompor untuk memasak air secara otomatis dan mematikannya pun secara otomatis (dengan kombinasi dengan sensor panas). Masih banyak kegiatan lain yang dapat dilakukan dengan menerapkan sistem ini.
Betapa nyamannya tinggal di dalam rumah yang serba otomatis. Membuka pintu tanpa beranjak dari kursi anda, memasak air tanpa meninggalkan pekerjaan anda, dan masih banyak lagi. Semoga informasi ini bermanfaat bagi pembaca sekalian. Terima kasih.
Sumber:
http://instruct1.cit.cornell.edu/Courses…
Robot laba-laba penjejak garis (Hexapod Line Follower)
Author: Dwi Putra Budi Wijaya
12 19th, 2009
Modul yang digunakan
-Delta Robo CPU
-Delta DC Driver
-Hexapod Mechanic
-Battery Pack
-ISP Cable
-Delta IR Line Sensing
Teori Dasar
Phototransistor TOPS030ATB adalah sebuah sensor inframerah yang dilengkapi dengan lapisan pelindung yang juga mereduksi pengaruh cahaya-cahaya liar selain batasan panjang gelombangnya yaitu 750–1050 nm. Pancaran cahaya dari LED Infrared yang dipantulkan ke garis akan diserap dan tidak dipantulkan ke detektor namun apabila cahaya menimpa bidang berwarna terang akan dipantulkan kembali ke detektor(phototransistor). Pada saat pancaran cahaya yang dipantulkan diterima oleh phototransistor maka sensor ini akan berada pada kondisi saturasi sehingga basis dari transistor yang terhubung pada bagian kolektornya akan terhubung ke ground. Transistor akhir tersebut akan cut off, arus bias akan mengalir dari resistor ke bagian keluaran sensor sehingga berlogika 1. Sebaliknya bila pancaran cahaya tidak diterima, maka phototransistor akan berada pada kondisi cut off. Arus bias akan masuk melalui resistor ke basis transistor akhir sehingga transistor ini berada pada kondisi saturasi dan keluaran sensor berlogika 0.
Cara Kerja
Dalam robot ini, bagian otak adalah Delta Robo CPU yang merupakan sistem mikrokontroler khusus untuk keperluan robotik. Sistem mikrokontroler ini sudah dilengkapi dengan konektor-konektor untuk sensor maupun pengendali motor. Sistem mikrokontroler sebagai otak karena sistem ini bersifat fleksibel dan dapat diprogram sesuai kebutuhan.
Program 1
#include
void main()
{
while(1)
{
P1_1=0; //Motor Kanan aktif
P1_3=0; //Motor Kiri aktif
P1_0=P1_4;
P1_2=P1_5;
}
}
Pada sistem mikrokontroler pengguna dapat dengan mudah menambahkan fungsi-fungsi lain pada robot atau mengatur waktu tunda antara sensor dengan aktifitas motor.
Pada kondisi tidak mendeteksi garis, P1.0 dan P1.3 akan berlogika 1 sehingga kedua motor bergerak maju. Seperti yang telah dijelaskan sebelumnya bahwa kondisi keluaran Delta IR Line Sensing akan berubah menjadi logika 1 saat sensor mendeteksi obyek terang (di luar garis) dan berubah menjadi logika 0 saat sensor mendeteksi obyek gelap ( garis). Logika 0 pada sensor kiri akan mengubah kondisi logika P1.4 menjadi 0.
Sesuai pada bagian program bahwa P1.0 = P1.4 maka kondisi logika port inipun juga berubah menjadi 0. Motor kiri yang terhubung dengan port tersebut akan mengubah arah menjadi mundur dan motor kanan tetap maju dan robot akan bergerak ke kiri.
Delta IR Line Sensing memiliki 9 lubang spacer yang berfungsi untuk mengatur jarak sensor. Untuk gerakan dengan kecepatan yang lebih tinggi, sensor dapat dipasang lebih maju agar robot dapat mendeteksi lebih dini adanya perubahan terang gelap pada sensor dan mikrokontroler pada Delta Robo CPU segera mengambil aksi. Untuk aplikasi yang membutuhkan kecepatan tinggi ini mikrokontroler tidak harus langsung menggerakkan motor namun dibutuhkan waktu tunda yang harus disesuaikan dengan kecepatan motor terlebih dahulu sebelum melakukan belokan.
Tidak ada komentar:
Posting Komentar